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What are the common
protein structure building blocks
that we can design ?



Secondary structure: local interactions

Primary Secondary Tertiary Quaternary
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Dihedral subspaces define specific secondary structures

Alpha
helix

Beta
sheet




Helices built from short range backbone hydrogen bonds

C terminus

N terminus

« Alpha helix: the carbonyl oxygen of residue “i” forms a hydrogen bond with the
amide of residue “i+4” in the same helix

« 1 helix;:i-i+5

« 3,0 helix, PolyProline Il helix: i - i+3



Beta sheet built from long range backbone hydrogen bonds

Parallel Antiparallel

Top view ¢

Side view

Figure 4-6b Figure 4-6a
L i Principles of Bi istry, Fifth Edition Lehninger Principles of Biochemistry, Fifth Edition
©2008 W.H.Freeman and Company © 2008 W.H.Freeman and Company

In a b-sheet, carbonyl oxygens and amides form hydrogen bonds between the
strands, i.e. between amino acids far away from each other in the primary sequence.



Amino acids have distinct secondary structure propensity

Glu
Met
Ala

Lys
Phe
Gln

Ile
Val
Asp
glis
rg
Thr
Ser
Cys
Asn

Pro
Gly

« Helix

B Conformation

B Turn

Glu, Met, Ala:
most frequent in a-helix

Val, Tyr, lle:
most frequent in b-sheet

Pro, Gly, Asn:
Most frequent in b-turn

Conclusion:

Glu has a high a-helix
propensity but

a low b-sheet propensity



Loops

e connect helices and strands
e at surface of molecule

e more flexible

e contain functional sites



Hairpin Loops ([3 turns)

e Connect strands in antiparallel sheet
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Figure 4.26 The Molecules of Life (© Garland Science 2013)



Connecting elements of secondary
structure define tertiary structure

Primary Secondary Tertiary Quaternary
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Super secondary structures —
Greek Key Motif

Most common topology for 2 hairpins

11



Super Secondary Structures-
B—a—B Motif

e connects strands in parallel sheet

The Rossman fold

12



Repeated B—a—[3 motif creates
B-meander: TIM barrel

13



Tertiary structure defines protein
function
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The quaternary structure of a
protein defines its biological
functional unit

Primary Secondary Tertiary Quaternary
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Quaternary structure: Hemoglobin
consists of 4 distinct chains

B globin 3 globin
subunit

a globin
subunit

Iron atom

Heme group



Quaternary structure: assembly of
protein domains

(from two distinct protein chains, or two
domains in one protein sequence)

Glyceraldehyde phosphate
dehydrogenase:

« domain 1 binds the
substance for being
metabolized,

e domain 2 binds a
cofactor




Protein Design — the folding problem

Goal #1: Design a sequence that folds into a given structure
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Protein Design — the solvation problem
Goal #1: Maximizing AE;

High solvent-exposure —
1 M for all residues i
Designed Designed
UF ' polar hydrophobic
N w - ‘g core ﬁ— core
|:> — l:>

High solvent-exposure
for surface residues
[ ]

00
— %
Solvation &
gain
.‘.‘ — Hydrophobic
—l : protein atom
: )
ieniEas Desolvation @,

cost



Protein Design — the interaction problem
Goal #1: Maximizing AE;

UF

» TN

A Little interactions

between residues

Numerous interactions _
between core residues

Weak interactions in protein cores

Optimal interactions in protein cores

hydrophobic Fully connected polar
packing interaction networks

“‘ Resk:2 ¢
®




Protein Design — the interaction problem
Goal #1: Maximizing AE;

A Solvation effects

> weak interactions

UF ' The scoring function calculates the balance
4 w ff‘g between opposite energy terms

(e.g. polar interactions vs solvation)

SCOI’ e = SLJ(atr +rep) + Ssolvation + Shb(srbb+lrbb+sc) +

Se/ec + Sdunbrack + Spair_ Sref + Sprob1b + Sim‘rares +
Sgsolt+ ShZO(SOIV + hb) + S_p/ane

Core interactions
l > desolvation costs
]




Protein Desigh — Examples overview

Protein design: Design a sequence that fits to a
given structure

1.Design protein stability

-

2.Design new protein folds (protein chimera;
de novo design ; ANNSs)



Protein stability & misfolding are
serious challenges

Goldenzweig Annu Rev Biochem (2018)



Energy

A
protein
Unfolded
Misfolded

The design goal: improve native-
state stability relative to unfolded
& misfolded states

Evolutionary data may

_ counter undesireable
Marginally stable

states

Native

Conformation

Goldenzweig Annu Rev Biochem (2018)



Membrane protein challenges: metastability

Proteome Drug targets Protein structures

Soluble
proteins

Membrane
proteins

Detergent
extraction

L

Shipping
Receiving

Unfolding



Membrane protein stabilization by design

l .Packaging .%
- Detergent Unfolding
Shipping &
) Receiving
Ma/ntenanCe

\ OQ Support

In silico
design

RNEREEES

ANy

e mutation

(PNAS 2012; Nature 2020)



Membrane protein challenges: motions

High resolution

Low resolution

f
{
H

J-Y Lemoigne

Out

Viral Membrane




G protein coupled receptors are largest family of
signaling receptors and drug targets

~800 human GPCRs Prototypical GPCR

neuro- inverse

light hormones  Peptides  transmitters agonist B2AR .
19 agonist

Signaling
pathways (Cherezov
activation etal., 2007)

(Rasmussen
et al., 2011)

it [\ /\

cyclase Rho GEF
Raf/Erk PLC Map kinase Erk1/2



Integrated computational / experimental approach to
design stabilized membrane proteins

Multiple Sequence Alignment TMH 3 alignment of select Class A GPCRs
to identify non-conserved = LCVIALDRY BI1AR
target residues LCVIAVDRY B2AR

LCIISIDRY ADRALA

LCAISIDRY ADRAILB

LCVISVDRY DRD1

LCAISIDRY DRD2

IILLTIDRY CCRS5

IMCISVDRY CCRY

LTAISVDRY Class A consensus

—J
highly conserved motif

Across Class A: 30% L; 30% F; 8% Y; 1% E

4
Computational protein design
— p p g }

(RosettaMembrane) [ Packing defects in Nop-conserved polgr.
TMH core residues with unsatisfied
hydrogen bond
Feedback of
experimental
results for
subseguent Redesign surrounding region 4
design to lower the free energy of

mutant variants

Y

E
Mutagenesis and Protein
expression
Select candidates
< for exrgri?ental Mutant ~/
validation
Radioligand binding to screen
apparent thermostability (Chen PNAS 2012)




Integrated computational / experimental approach to
design stabilized membrane proteins

Multiple Sequence Alignment
to identify non-conserved
target residues

TMH 3 alignment of select Class A GPCRs

LCVIALDRY
LCVIAVDRY
LCIISIDRY
LCAISIDRY

LCVISVDRY
LCAISIDRY

LLLLTIDRY
IMCISVDRY
LTAISVDRY

 N—

B1AR
B2AR
ADRA1A
ADRA1B

DRD1
DRD2

CCR5
CCR9S
Class A consensus

highly conserved motif

Across Class A: 30% L; 30% F; 8% Y; 1% E

(Chen PNAS 2012)




Integrated computational / experimental approach to

design stabilized membrane proteins

Weak interactions

> Computational protein design | /oSstssssssssmsEsSsSsssssELSsLsSsLS LSSt \
(RosettaMembrane) { Packing defectsin ~ Non-conserved polar 1
{ TMH core residues with unsatisfied |
| hydrogen bond E

Feedback of

experimental

results for
subseguent Redesign surrounding region
design to lower the free energy of
mutant variants
Y
Mutagenesis and Protein
expression

l

Radioligand binding to screen
apparent thermostability

Select candidates
for experimental
validation

(Chen PNAS 2012)



Stabilizing Designs Target Nonconserved Polar
Residues and Packing Defects

| Unsatisfied
polar groups

| Packing
defects

(Chen PNAS 2012)



Designed GPCR stabilized and specifically locked in the
ligand bound state

!

% 3H-DHA binding

I
0 10 20 30 40 50 60 70 80 110 -
temp (deg C) 100 -

©
o
1

DHA

% 3H-DHA binding
3
1

10 9 -8 -7 6 5 4 -3 -2 1 0
Log [Isoprenaline](M)

(Chen PNAS 2012)



PSSM
score

The Protein Repair One-stop Shop
(PROSS) algorithm

Conservation

Step 1

analysis

Step 2
Atomistic modeling

Step 3
Combinatorial
design

=
-
- i »
e

mutations

Goldenzweig Mol Cell 2016



hAChE is an essential & very

challenging enzyme

Essential role in
neuromuscular
junctions

Target of nerve
agents

>500 aa

Multiple disulphides
& glycosylation sites

Active site buried 20
A from surface

Glycosylation sites



Best design: 51 simultaneous
mutations relative to hAChE

A

a1 \
Human Buried
hydrogen
- bonds
Surface
polarity c
g
L441 Q
Helix
capping
HG24OS | ‘
B \
L418Y

Core
packing

Loop
rigidity |/ /

L414F




All designs are fully functional &
more stable
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Dramatic improvement in bacterial
expression levels

1770

Expression:

15004 [ medium scale
[] small scale

Fold activity over hAAChE W

Collaboration with Dan Tawfik (Weizmann)



Malaria is the most virulent parasitic
disease; no effective vaccine

>3 billion people at risk

>200 million clinical
cases per year

~500,000 deaths per
year, mostly of children




PfRH5: The prime vaccine
candidate for the blood-stage

* Challenging to develop:

Unstable & requires expensive insect-
cell expression

Vaccine requirements: cost-effective
microbial expression; stability > 40°C

Wright..Higgins Nature 2015



Design is efficiently produced in
bacteria & functionally identical to

PfRH5S
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Protein Desigh — Examples overview

Protein design: Design a sequence that fits to a
given structure

1.Design protein stability (membrane proteins)

: 2.Design new protein folds (protein chimera;

_ de novo design; ANNs)




Protein fold design approaches

(PDB, Uniprot...)

Triosephosphate isomerase (1TIM)

complexity
+ Scaffold Selection ;
. Fragment-based
E Natural protein . design De-novo design :
E Protein \ o gng IL E
 databases E \ e :

Lechner, Ferruz, Hocker (2018) Curr Opin Struc Biol



Design by mimicking natural evolution of proteins
through duplication & recombination

Duplication
duplicated & , Hocker et al. (2001)
optimized ! Nat Struc Biol
> % Hécker et al. (2009)
o Biochemistry

Cf{)"?;ir;,gs Broom et al. (2012)
Structure
> Lee & Blaber (2011)
JMB

Hocker et al. (2004)
PNAS
Claren et al. (2009)
PNAS

recombined &
functionalized

>

Hocker (2014) Curr Opin Struc Biol



https://[fuzzle.uni-bayreuth.de/

73::‘; Fuzzle Classes Folds SuperFamilies Families Fragments About ~
L .

Fold Puzzle Database

Fuzzle is a database of evolutionary related protein fragments
Ferruz et al. (2020)

. / Search for related Entries in the Database:
\ ‘ Insert PDB, Sequence, or SCOPe domail Submit
Examples: 1pky, c.23, Flavodoxin Sequence (2HNA)
———
v arn | re »

https://fuzzle.uni-bayreuth.de/hh/StatClass

Ferruz, Lobos, Lemm, Toledo-Patino, Farias-Rico, Schmidt, Hocker, (2020) J Mol Biol 432: 3898-914



LECN Design of protein chimeras with ProtLego
PROTLEGO
@ Fetch Fuzzle database @ ------- > @ Represent relationships
query
domains
folds
RMSD
;
@Analyze structures «-- @ Score chimeras «-- @ Build chimeras
Hydrogen O_O

networks : A S 1
| = (:5 & Jl

& o\

%igv 0" 29
-(/m_e, Rossman  P-loop

Hydrophobic (7/1 f?""

lt-bridge 7/ 13 , X
salt-bridge et %i‘;g\; (/ﬂf-‘* //1:‘

https://hoecker-lab.github.io/protlego/  Ferruz, Noske, Hécker, (2020) bioRxiv / in revision



Protein fold design approaches

complexity
+ Scaffold Selection :
' Fragment-based / \
E Natural protein ~ design De-novo design :
E Proteln , %} Barrel axis E
, databases ) \ A |
+  (PDB, Uniprot...) & ; 2 |
: ( PeER N @ So% |
: o) Hydrogen bond axi.s.' /".. :
: K Tnosephos:hale |somerase(lTlM)/ :

Lechner, Ferruz, Hocker (2018) Curr Opin Struc Biol



TOP7 — Design of a new fold

Kuhlman, Dantas, ... & Baker Science, 2003

1. Define new scaffold not observed in Nature

2. Find sequence that will fold into scaffold

Approach: Iterate between

Sequence design (with fixed backbone structure) and
Structure prediction (with fixed sequence)

Why do we need a structure prediction step?

Because we are starting with a synthetic scaffold
that is a very low resolution guess



Design of a new fold: the designability problem

Designability: the probability to find a (# of) sequence folding
into a specific scaffold

Designability A

high Scaffold observed in
Nature

?  Artificial scaffold not
observed in Nature




TOP7 — Design of a new fold

Kuhlman, Dantas, ... & Baker Science, 2003

2D sketch of a novel fold

Legend: (hexagon, strand; square, helix; circle, other). Hydrogen bond
partners are shown as purple arrows. The amino acids shown are those
in the final designed (Top7) sequence



Creation scheme of TOP7

[1. Derive constraints from 2D sketch}

v

{2. Build 3D backbone structures that fulfill constraints (150)}

v

3. Design sequences for backbone templates

e allaaat 71/93 positions
e polar only for surface positions

/4. Optimize backbone conformations I
e |nitial backbone perturbation, followed by
e side chain optimization, and

e backbone torsicI angle minimization  /

5x15
cycles




C G85
D78

Assessment of Design

N (1) Structure
¢1.17A backbone rmsd
e highly accurate!

(2) Stability
e stable at 98°C!
e stable at ~5M Gu-Hcl!

Blue: model; Red: xray



TOP7/

* No sequence memory - more stringent test of
force field and minimization procedure

* Optimized steric packing prevents molten
globules

* No similarity to natural sequences (psiblast)

- What can we learn from a protein that did not
undergo natural selection??



Protein Desigh — Examples overview

Protein design: Design a sequence that fits to a
given structure

1.Design protein stability (membrane proteins)

: 2.Design new protein folds (protein chimera;

_ de novo design; ANNs)




Protein sequence design by conformational
landscape optimization to prevent alternative

conformations

Target (P)

Minimize energyjof P Maximize|probability] of P
selects sequence a selects sequence B

Energy

(P) Conformation

Using trRosetta: predicts
the probability of residue—
residue distances (Q) and
orientations for a sequence
(X).

Rationale: Probability
distributions over possible
distances and orientations
should contain information
about alternative
conformations

(Yang, PNAS 2020)



MSA

Convolutional neural network trRosetta: predicting interresidue
geometries and protein 3D structure from a multiple sequence

alignment A /@

. w [ o 2
Protein sequence database: q (,\30 o\@D
Contact prediction from co-evolution vl

cB

N-O-O-aO-O0O0O0O0O0O0HOO0O00-¢C

R D Protein o symmetric
R D structure QD/ \@
i D database ;
K E
K E |
; : ¢ 0,
W \' ?
A z : ] -8/ 8 2
T T //h//v (p21 z
correlated CB
1 0,, <" P2
Ca
asymmetric
W\{\) N 1\@
PR a®
, W, , 912, , and @21 fully define the
\ c d 812, 12, 621 d @21 fully define th

. relative positions of the backbone atoms of 2 residues
contact in 3D



Convolutional neural network trRosetta: predicting interresidue
geometries and protein 3D structure from a multiple sequence

alignment

A

w(\'ﬁ )18

7

d, ®
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(cB.

(Ca)

»

2

symmetric

B

S

0] d ()

1

12D conv| |2D conv| |2D conv| |2D conv|

| InstanceNorm |
[ 2Dconv, 3x3,d | d=1,24816
| Dropout ]
T
| InstanceNorm |
|_2D conv, 3x3,d |
I ELU ]

| ZDcor]w,1x1 ]

| )

couplings and scores

coevolutionary

sequence, PSSM,
entropy

Can we train an
ANN to learn
distance and
geometry from
multiple sequence
alignments?

(Yang, PNAS 2020)



Contact prediction from co-evolution

MSA

Convolutional neural network trRosetta: predicting interresidue
geometries and protein 3D structure from a multiple sequence

alignment

r—PSE}NNNWWW

—>J < HEHEEHDOUO

correlated

contact in 3D

All of the coordinates show characteristic
patterns => ideal for training a deep neural
network to predict them
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A

Convolutional neural network trRosetta: predicting interresidue

alignment

»

@ _Ere
)
d /'«
7
g~

(cB.

Ca

®

2

symmetric

5

\

S

0] d ()

1

12D conv| |2D conv| |2D conv| |2D conv|

| InstanceNorm |
[ 2Dconv, 3x3,d | d=1,24816
| Dropout |
T
| InstanceNorm |
|_2D conv, 3x3,d |

| ELU |

/

| ZDcor]w,1x1 ]

|

couplings and scores

coevolutionary

sequence, PSSM,
entropy

geometries and protein 3D structure from a multiple sequence

Stack of dilated residual-
convolutional blocks that
gradually transforms 1- and 2-
site features derived from the
MSA

Training: simultaneous
prediction of the 4 objectives
on 16,047 protein chains with
the average length of 250
amino acids for whose MSAs
can be constructed

Loss over the 4 objectives



3D structure reconstruction using trRosetta

-100 0 100

-100 0 100

d ' : Smoothed inter-residue restraints

¥

« Energy minimization
(MinMover)

Coarse-grained models

\ 4

Full-atom relaxation .
(FastRelax)

Final model



Protein sequence design by conformational landscape optimization

A Target (P)

Minimize energy of P Maximize probability of P ]
selects sequence a selects sequence 3 Solution:

: g directly optimize over all possible

h amino acid sequences and all possible
b structures in a single calculation by
backpropagating gradients through
trRosetta from the desired structure to
the input amino acid sequence

Energy

(P) Conformation



Protein sequence design by conformational landscape optimization

Rationale: trRosetta predicts the probability of residue—residue distances (Q) and
orientations for a sequence (X). Probability distributions over possible distances
and orientations should contain information about alternative conformations

Overview of trRosetta fixed backbone sequence design method

Prediction (Q)

Q = TrRosetta(X)
predict

Sequence (X)

backprop
(design)

Y = softmax(Y)
X = one_hot{argmax(Y))
X = stop_gradient(X - Y) + Y

TH RS Lol DR 1. '_;L_'.'_;;..: T

update Gradient (V)

Logits (Y) Y=Y -2V /[|V]] V =0L/oY

(Norn, PNAS 2021)



trRosetta predicts properties of the folding energy landscape

Energy landscape
A — favoring design

Energy landscape
incompatible with design

Probability distribution of distance
& orientation by trRosetta

Prob. density

1 2 3
—logP(contacts|sequence)

Energy prediction by Rosetta

Prob. density

-4 -3 -2
Energy/residue



trRosetta predicts alternative low-energy conformations
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trRosetta predicts scaffold designability and
experimental success
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Take home messages

Fixed backbone trRosetta design outperforms traditional Rosetta in
generating sequences that fold with high probability into a target
structure

Fixed backbone trRosetta design procedure converged for a variety
of ~100-residue protein structures after ~25 iterations, requiring
only a few minutes of GPU time. (compared to CPU hours for
Rosetta)



Major points to remember

Design sequence for a target structure: maximixing AE folding
AE folding is a compromise between opposite interactions
Which features to target for optimizing stability

De novo design challenges: designability

De novo design requires sequence-structure exploration

ANNs trained on protein sequences and structures can automatically
optimize the design for a target structure



