

BIOENG-320

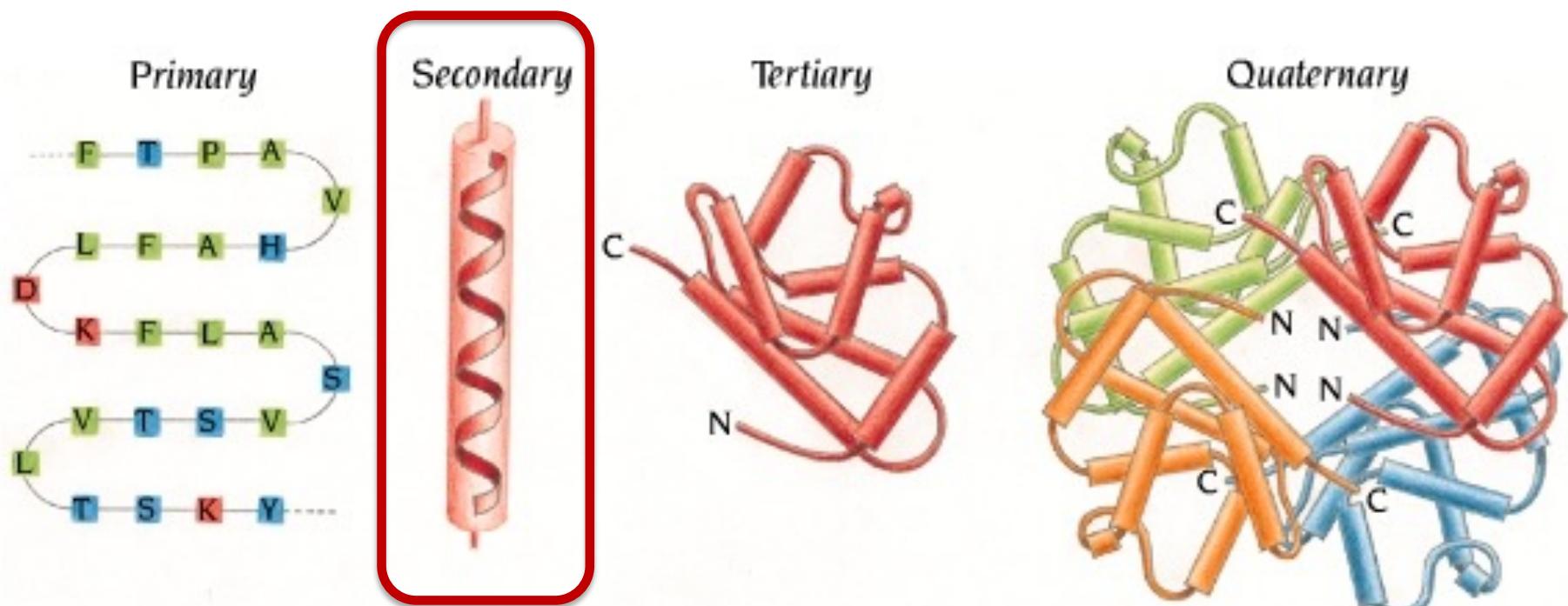
Synthetic Biology

Protein design Lecture 2
March 3, 2025

Patrick Barth
EPFL

What are the common
protein structure building blocks
that we can design ?

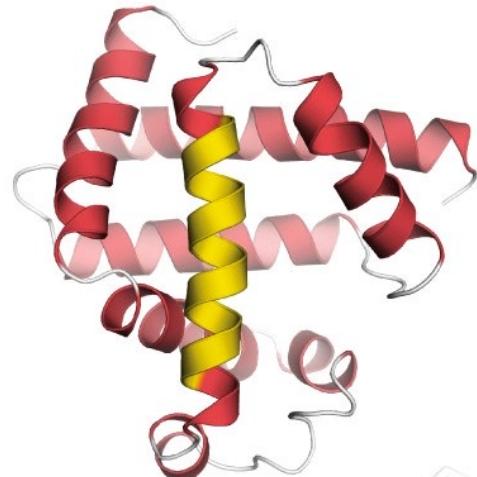
Secondary structure: local interactions



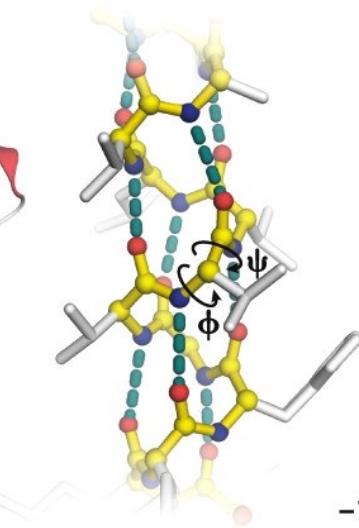
©1999 GARLAND PUBLISHING INC.
A member of the Taylor & Francis Group

Dihedral subspaces define specific secondary structures

Alpha
helix

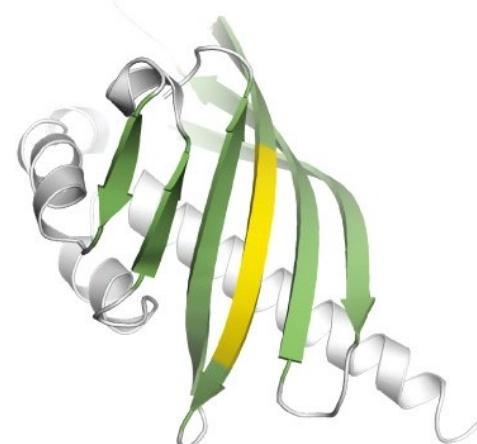
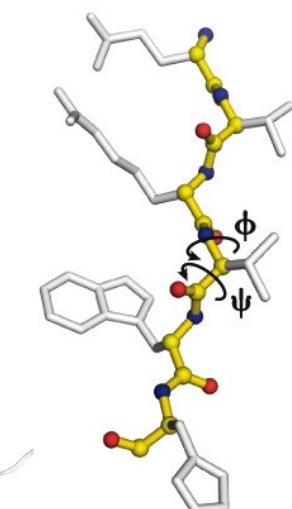
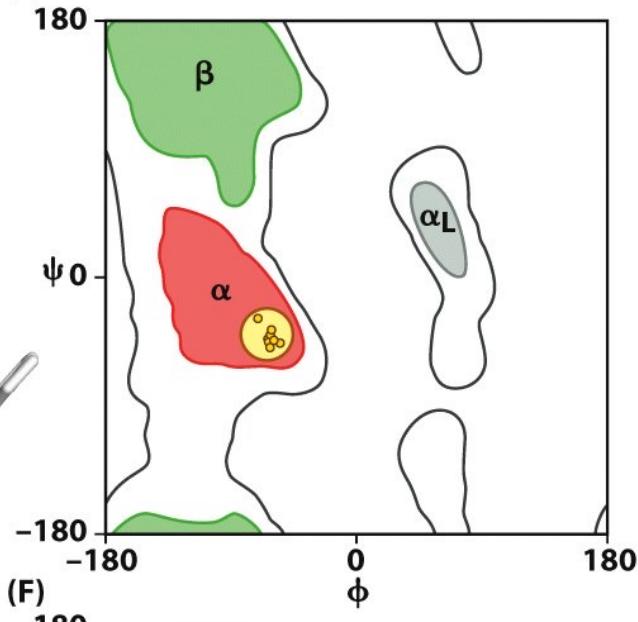
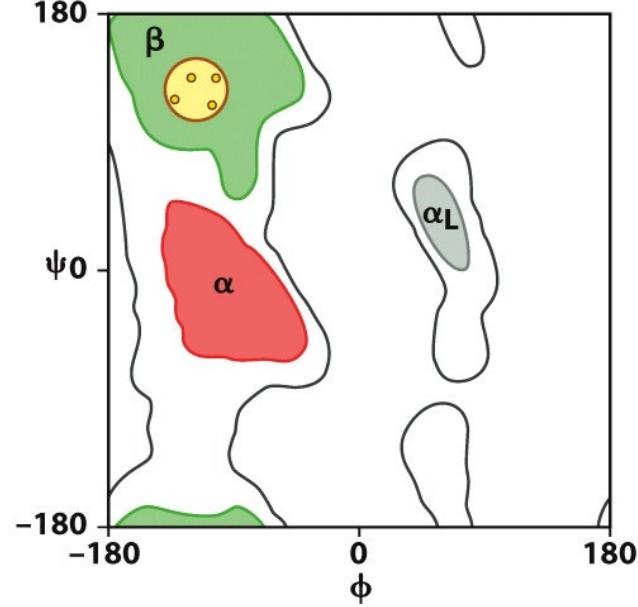


(D)

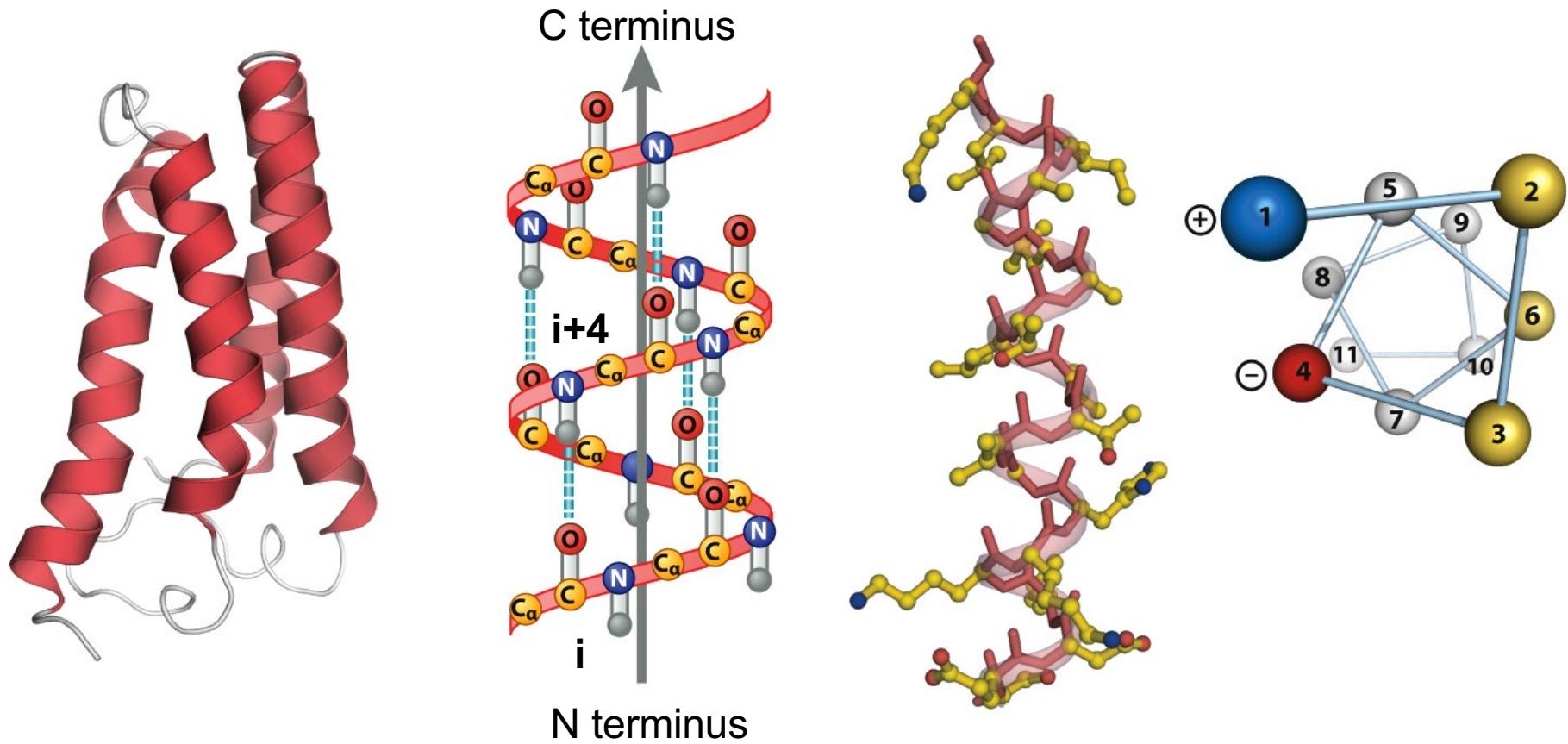


(E)

Beta
sheet



Helices built from short range backbone hydrogen bonds

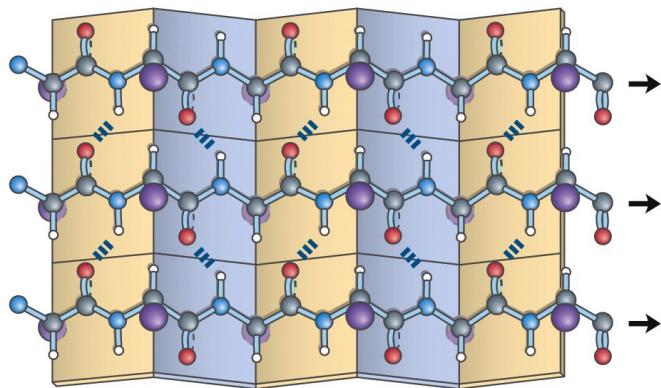


- Alpha helix: the carbonyl oxygen of residue “i” forms a hydrogen bond with the amide of residue “i+4” in the same helix
- π helix: $i - i+5$
- 3_{10} helix, PolyProline II helix: $i - i+3$

Beta sheet built from long range backbone hydrogen bonds

Parallel

Top view



Side view

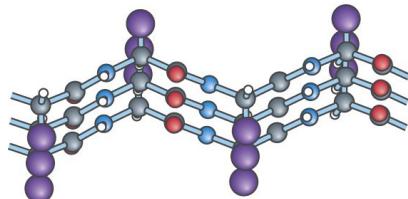
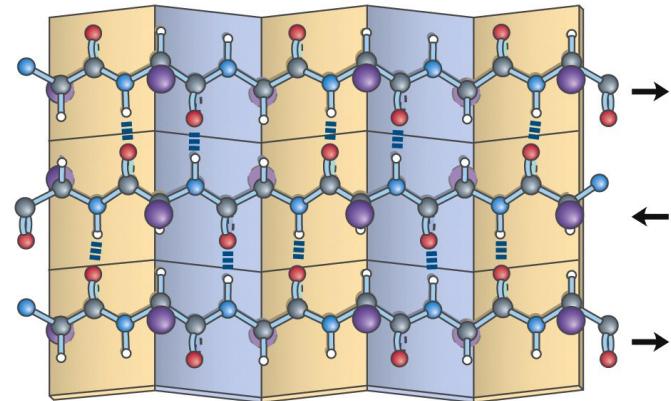


Figure 4-6b
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company

Antiparallel

Top view



Side view

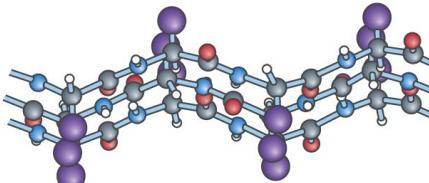
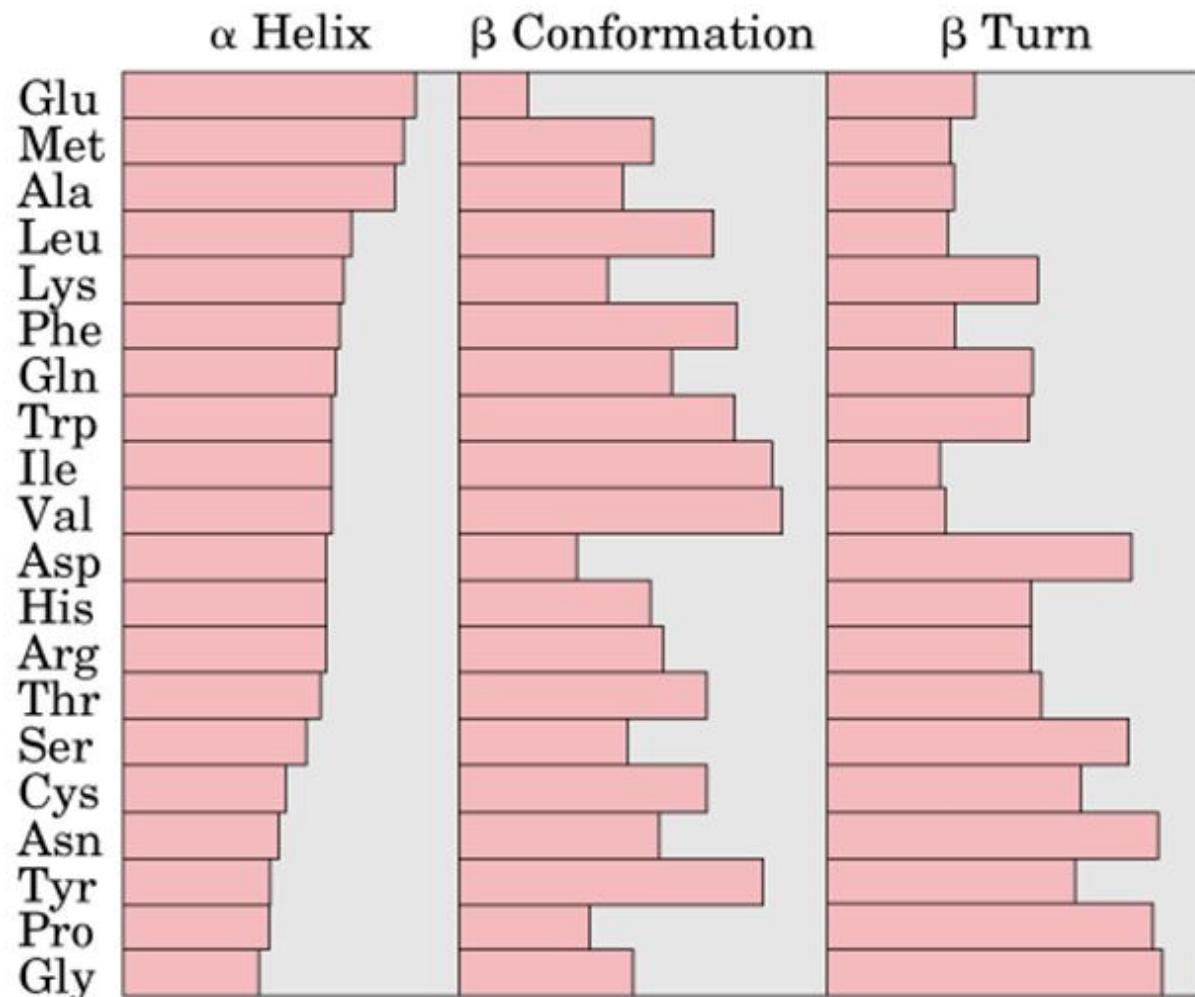


Figure 4-6a
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company

In a β -sheet, carbonyl oxygens and amides form hydrogen bonds **between** the strands, i.e. between amino acids far away from each other in the primary sequence.

Amino acids have distinct secondary structure propensity



Glu, Met, Ala:
most frequent in α -helix

Val, Tyr, Ile:
most frequent in β -sheet

Pro, Gly, Asn:
Most frequent in β -turn

Conclusion:
Glu has a high α -helix
propensity but
a low β -sheet propensity

Loops

- connect helices and strands
- at surface of molecule
- more flexible
- contain functional sites

Hairpin Loops (β turns)

- Connect strands in antiparallel sheet

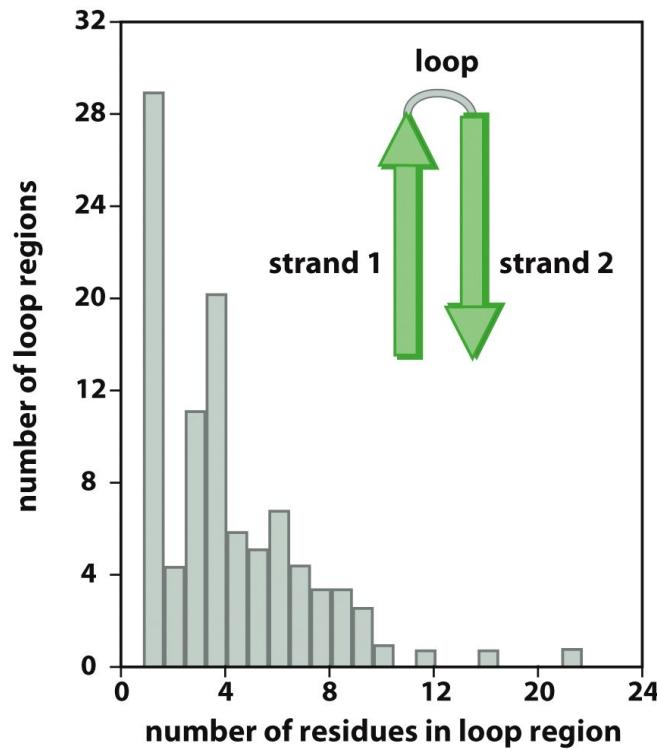


Figure 4.25 The Molecules of Life (© Garland Science 2013)

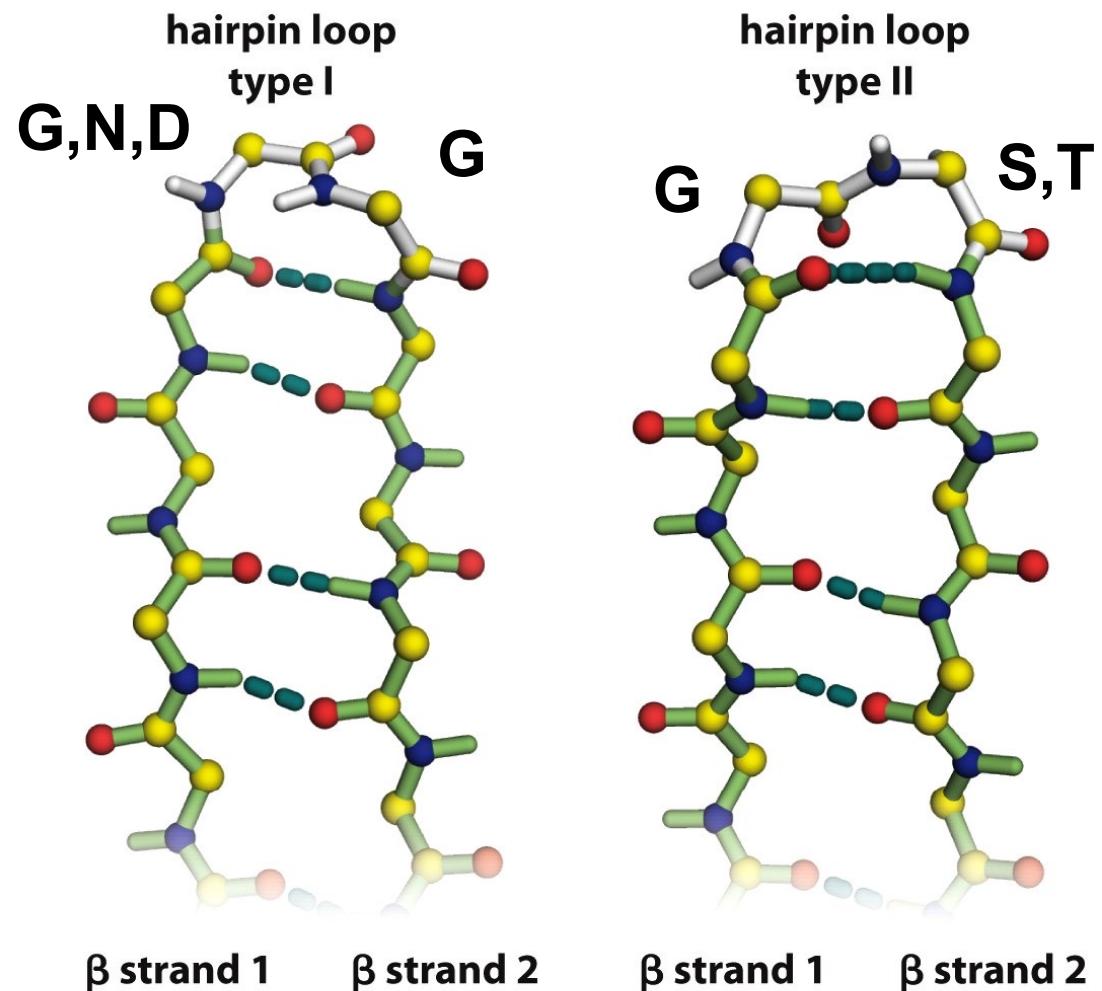
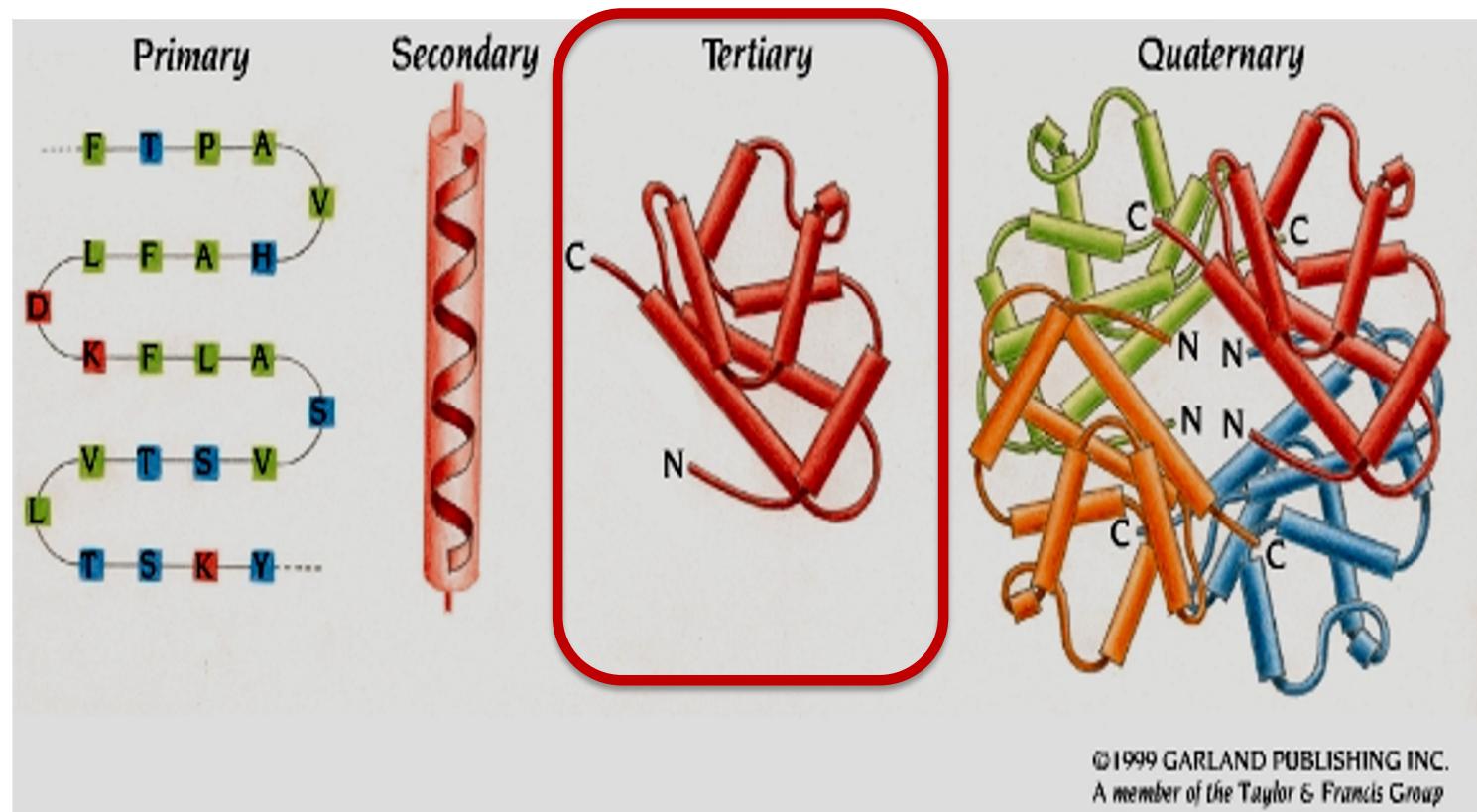


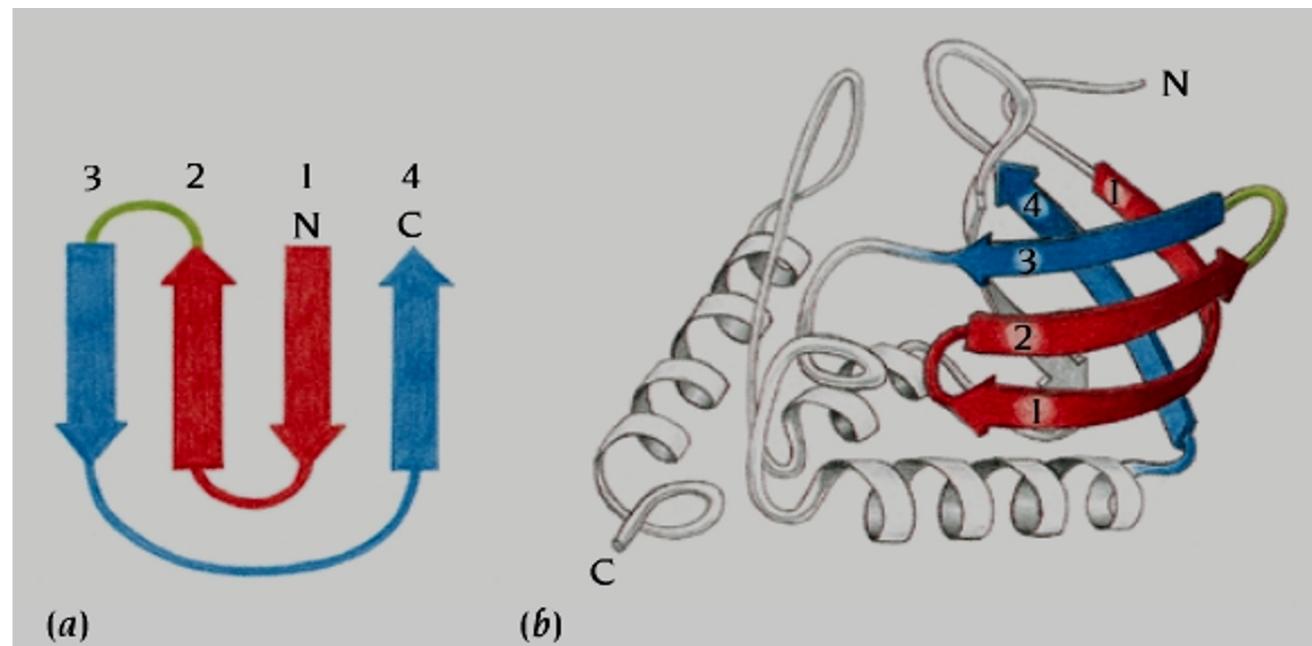
Figure 4.26 The Molecules of Life (© Garland Science 2013)

Connecting elements of secondary structure define tertiary structure



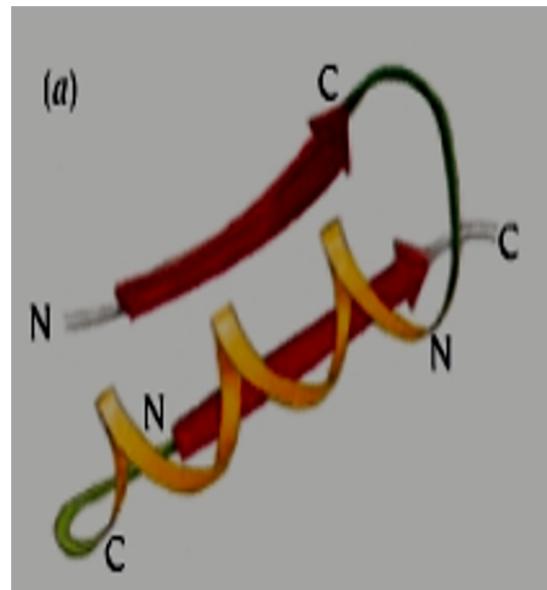
Super secondary structures – Greek Key Motif

Most common topology for 2 hairpins

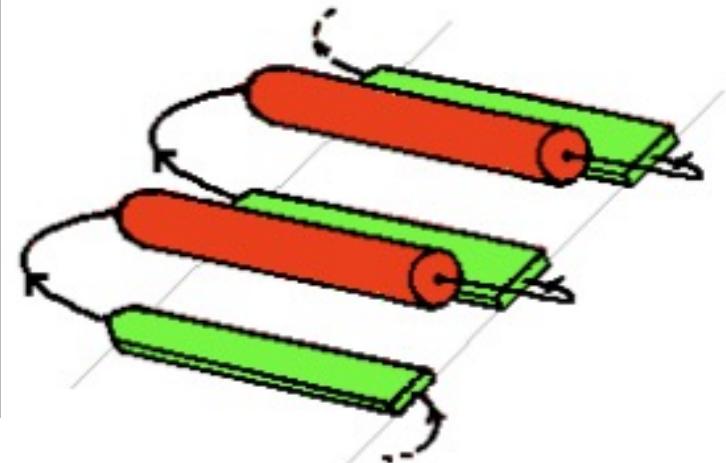


Super Secondary Structures- β - α - β Motif

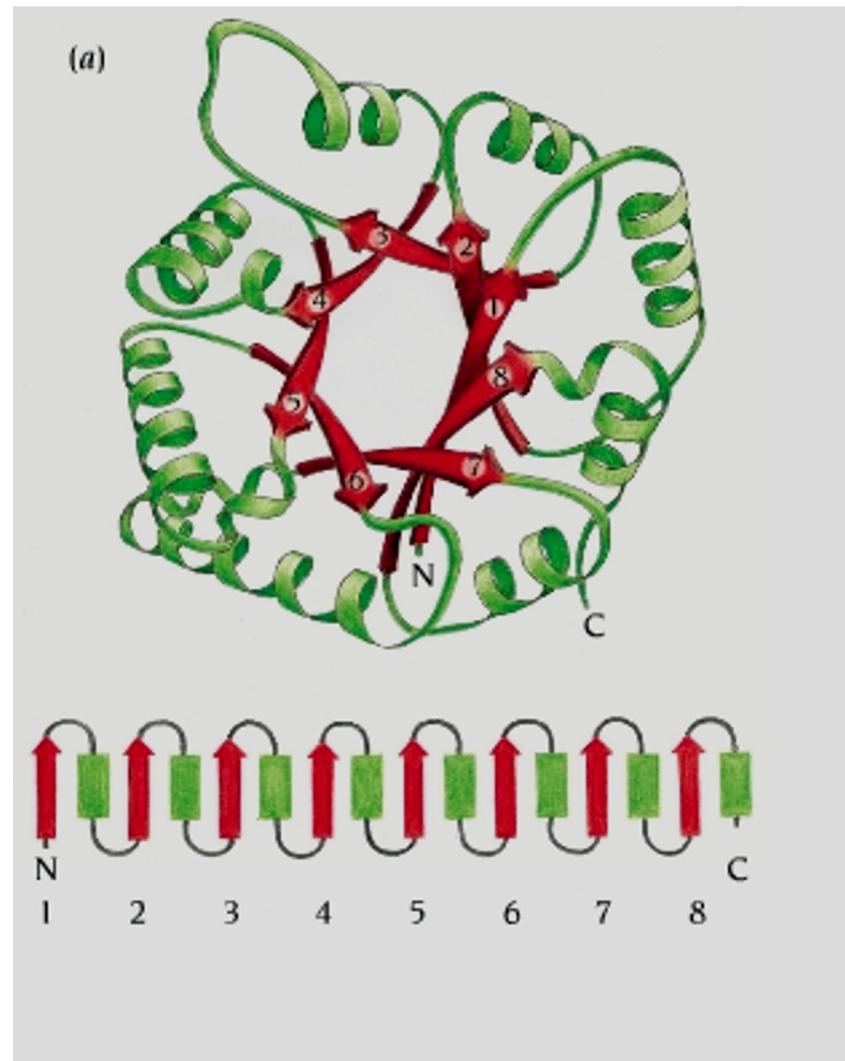
- connects strands in parallel sheet



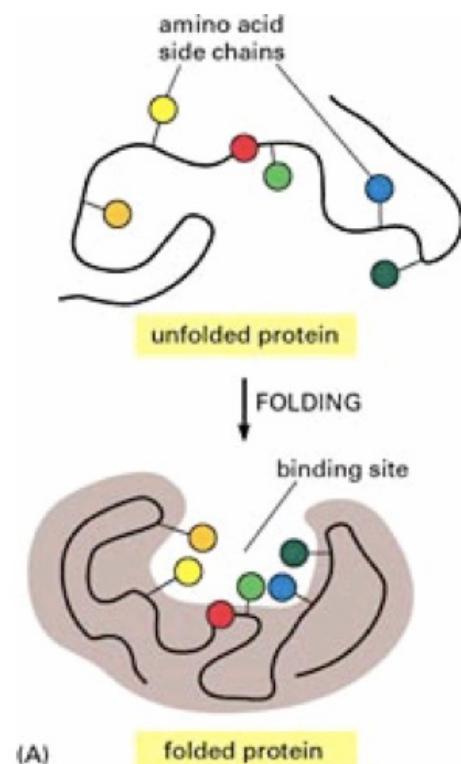
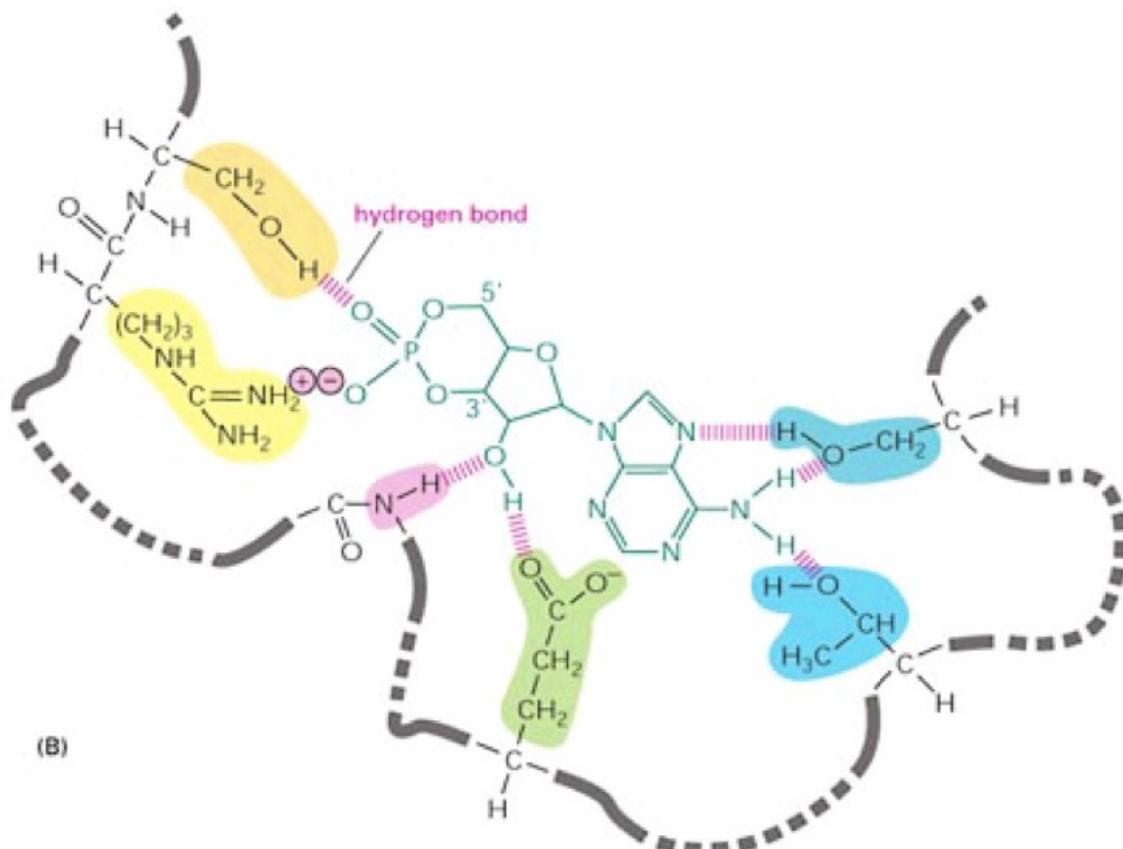
The Rossman fold



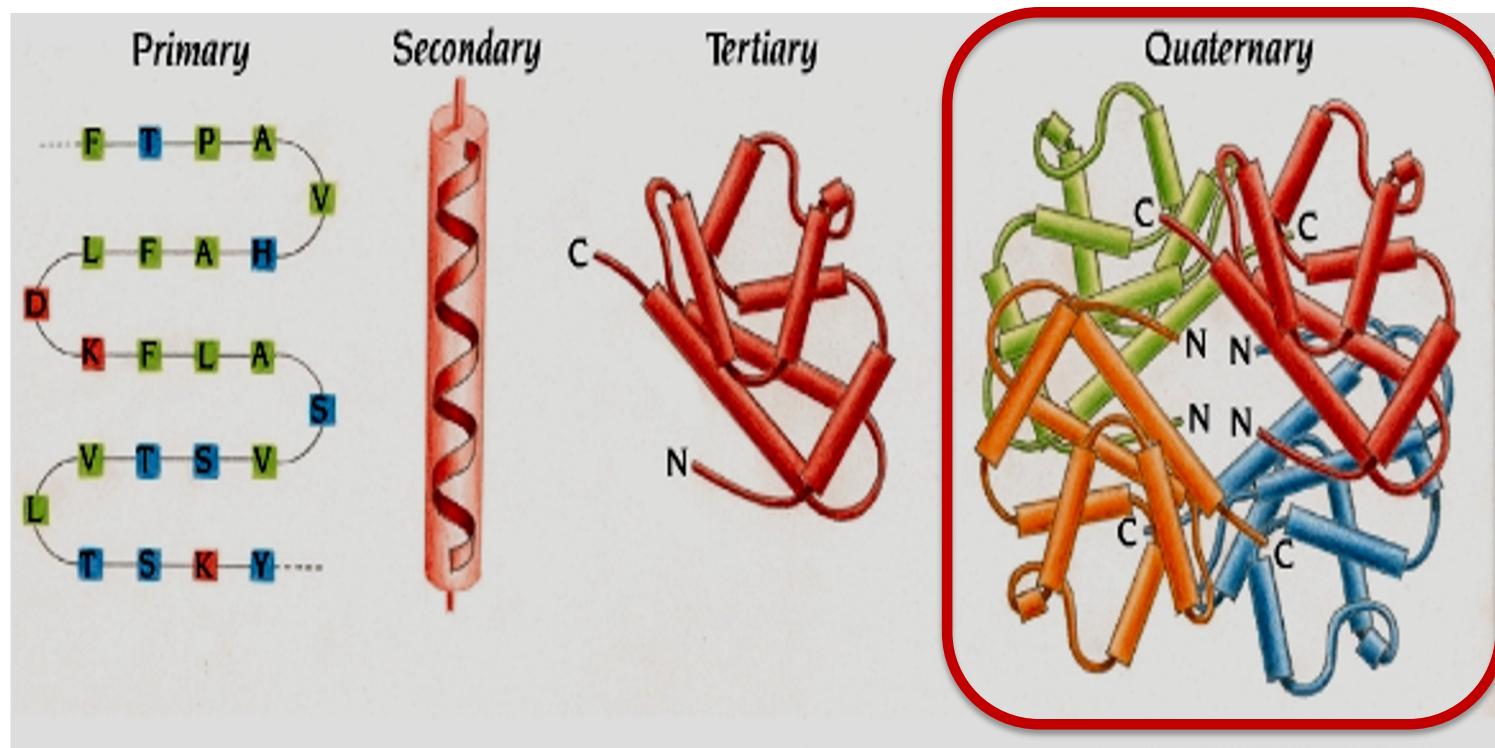
Repeated β – α – β motif creates β -meander: TIM barrel



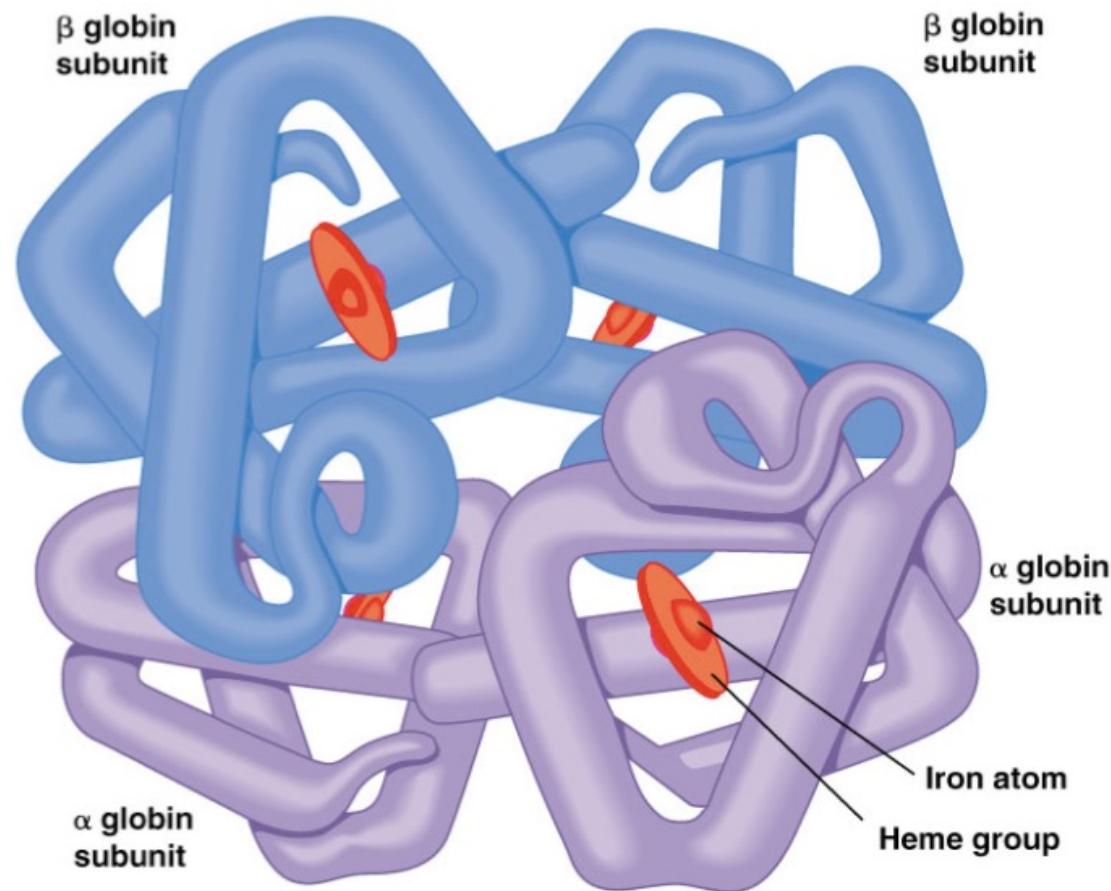
Tertiary structure defines protein function



The quaternary structure of a protein defines its biological functional unit



Quaternary structure: Hemoglobin consists of 4 distinct chains



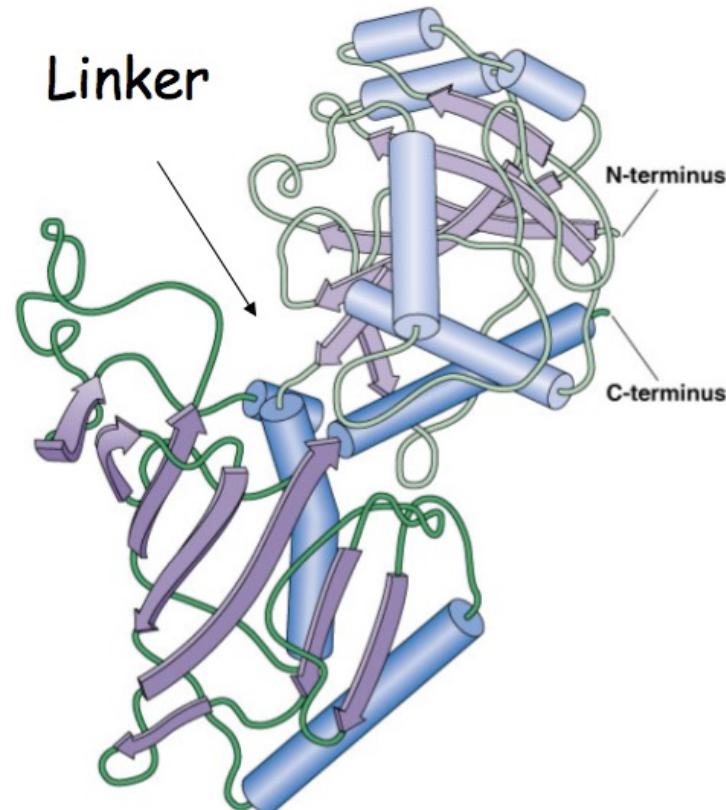
Copyright © 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Quaternary structure: assembly of protein domains

(from two distinct protein chains, or two domains in one protein sequence)

Glyceraldehyde phosphate dehydrogenase:

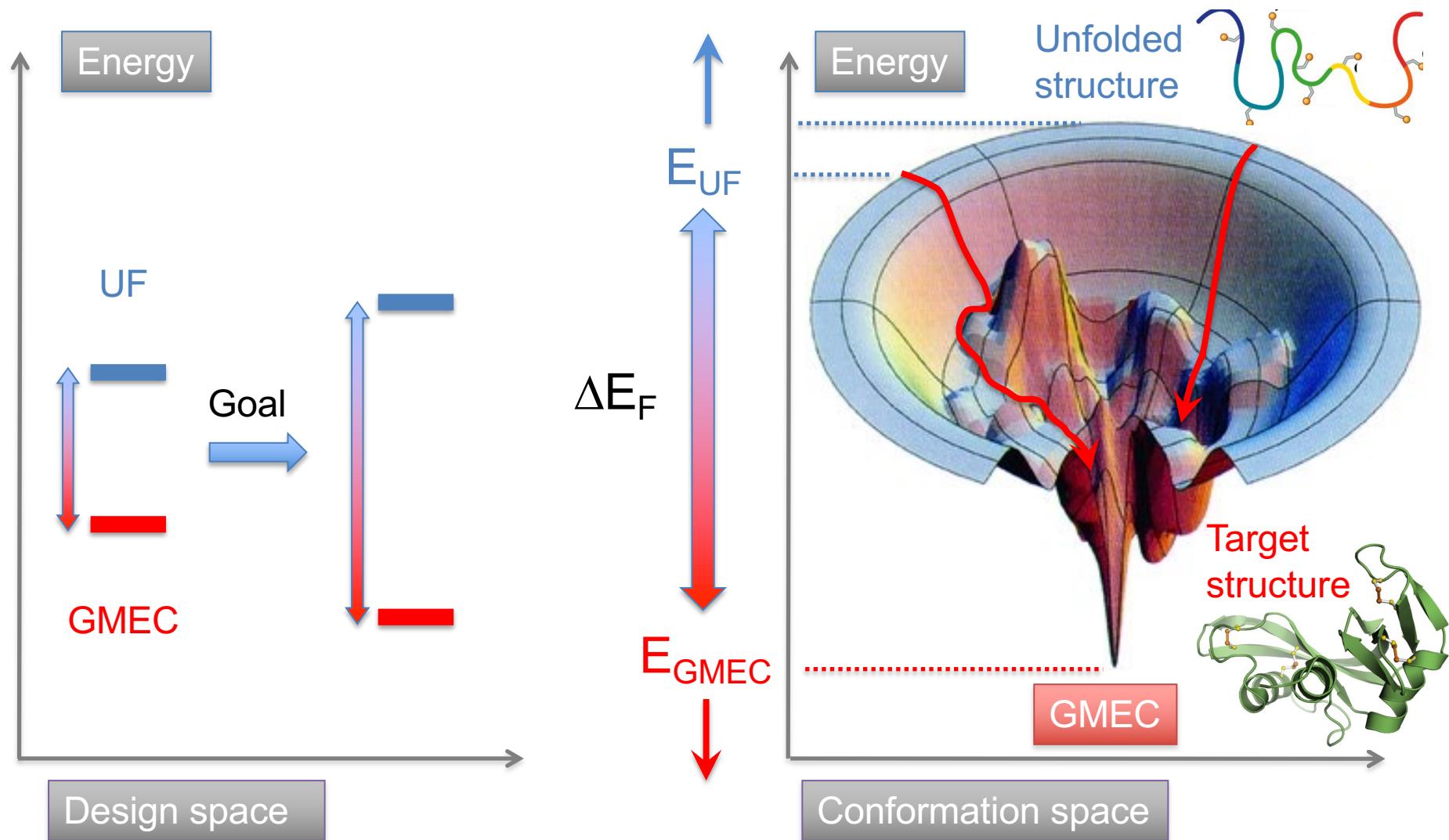
- domain 1 binds the substance for being metabolized,
- domain 2 binds a cofactor



Copyright © 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

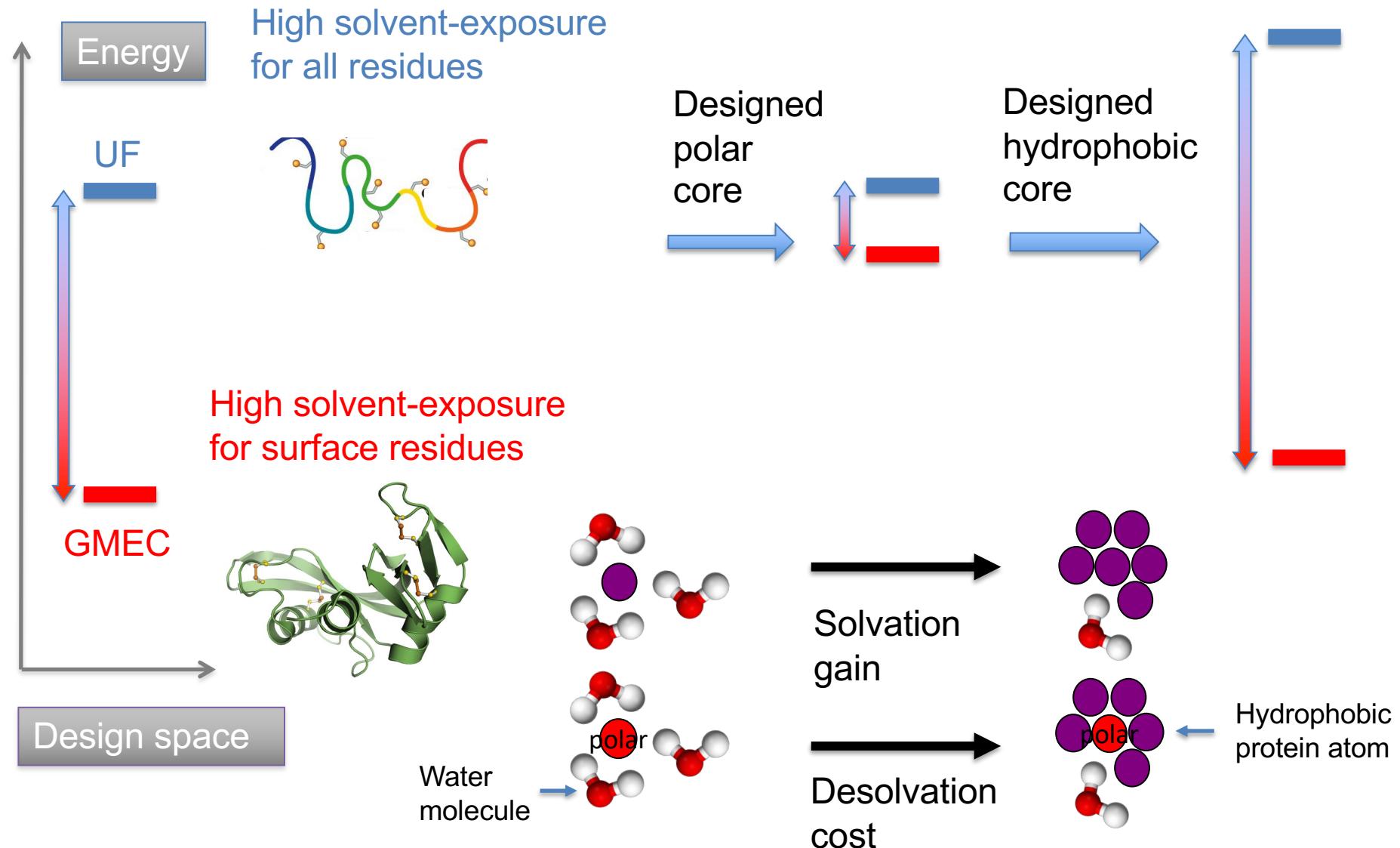
Protein Design – the folding problem

Goal #1: Design a sequence that folds into a given structure



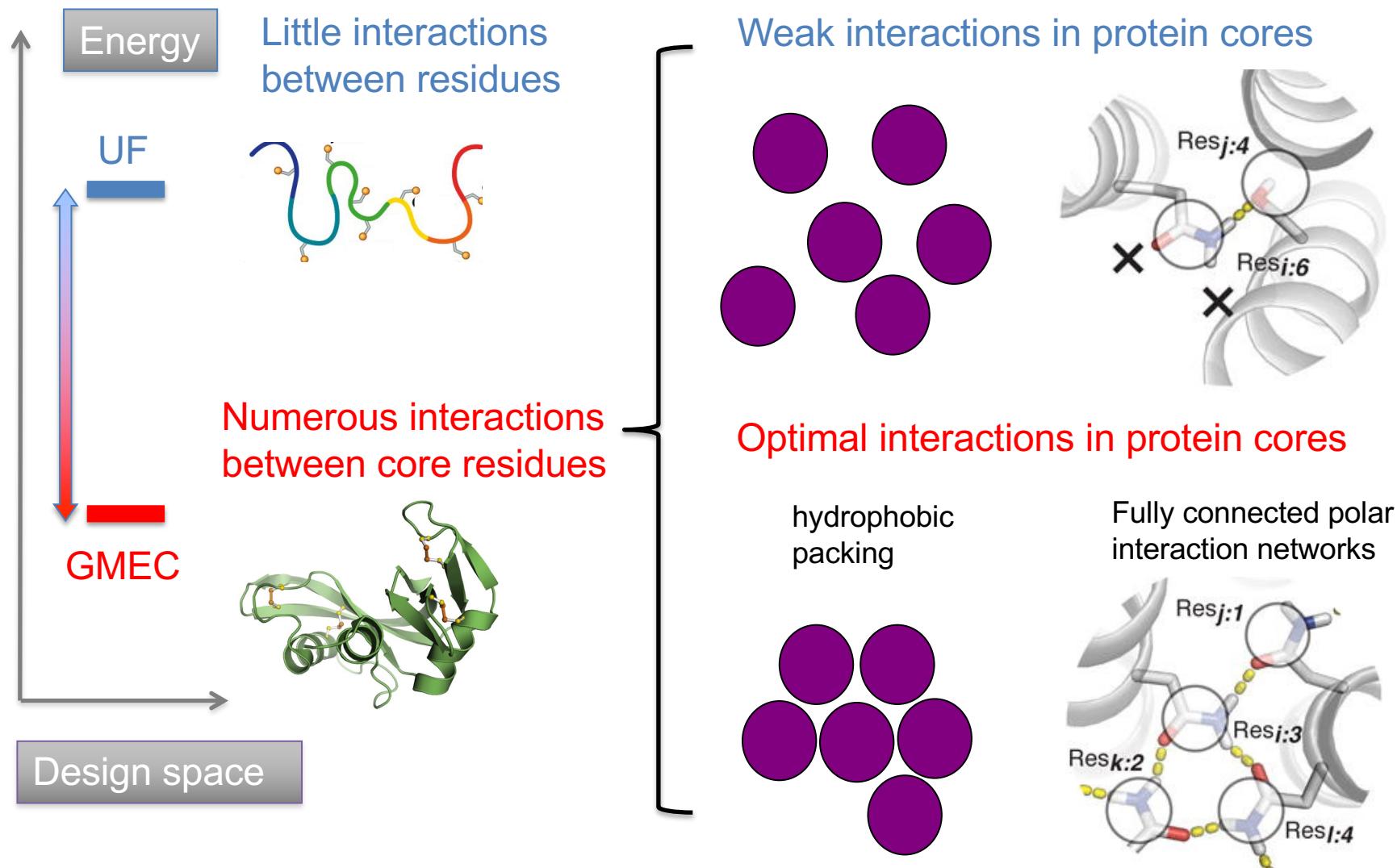
Protein Design – the solvation problem

Goal #1: Maximizing ΔE_F



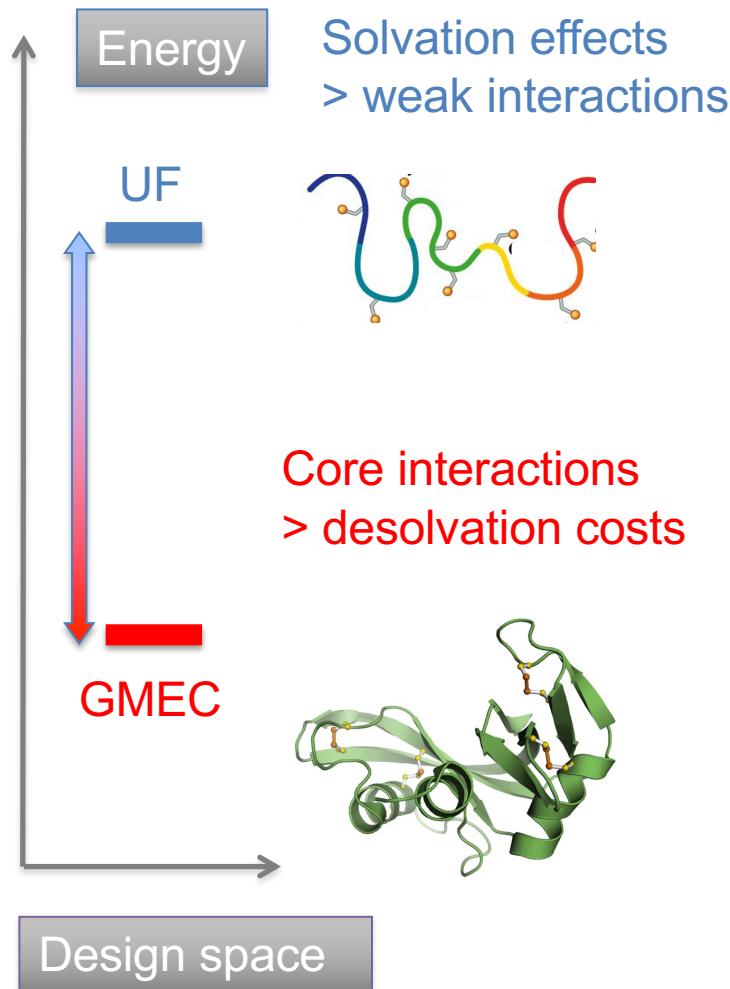
Protein Design – the interaction problem

Goal #1: Maximizing ΔE_F



Protein Design – the interaction problem

Goal #1: Maximizing ΔE_F



The scoring function calculates the balance between opposite energy terms (e.g. polar interactions vs solvation)

$$\text{Score} = S_{LJ(atr+rep)} + S_{solvation} + S_{hb(srbb+lrbb+sc)} + S_{elec} + S_{dunbrack} + S_{pair} - S_{ref} + S_{prob1b} + S_{intrares} + S_{gsolt} + S_{h2o}(solv + hb) + S_{plane}$$

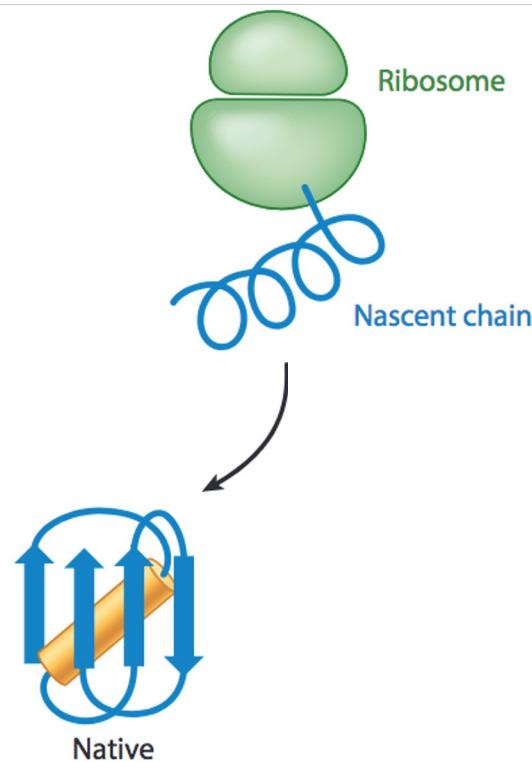
Protein Design – Examples overview

Protein design: Design a sequence that fits to a given structure

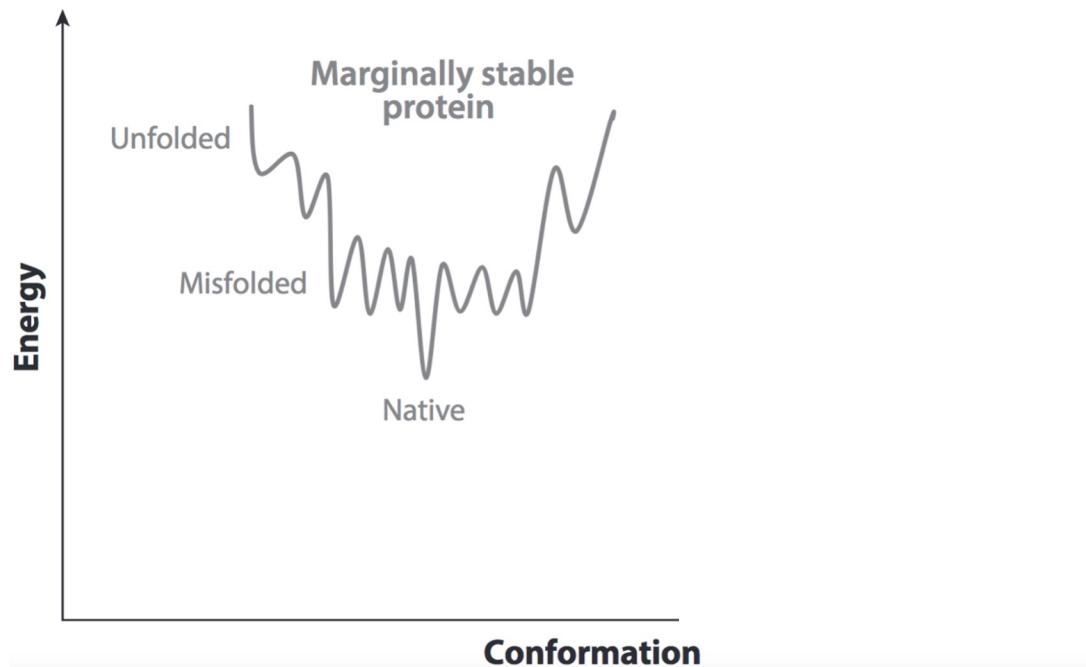
1. Design protein stability

2. Design new protein folds (protein chimera;
de novo design ; ANNs)

Protein stability & misfolding are serious challenges



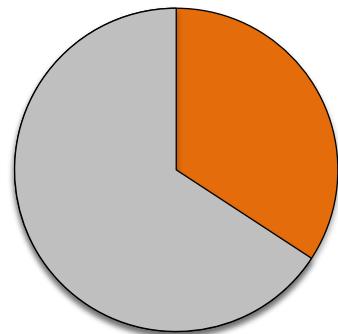
The design goal: improve native-state stability relative to unfolded & misfolded states



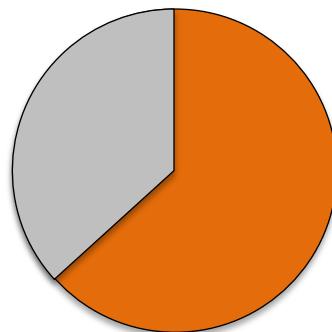
Evolutionary data may counter undesirable states

Membrane protein challenges: metastability

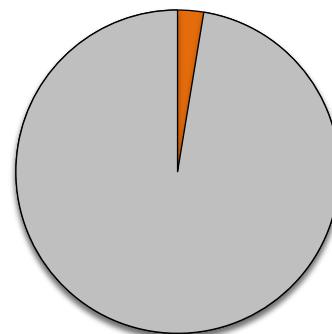
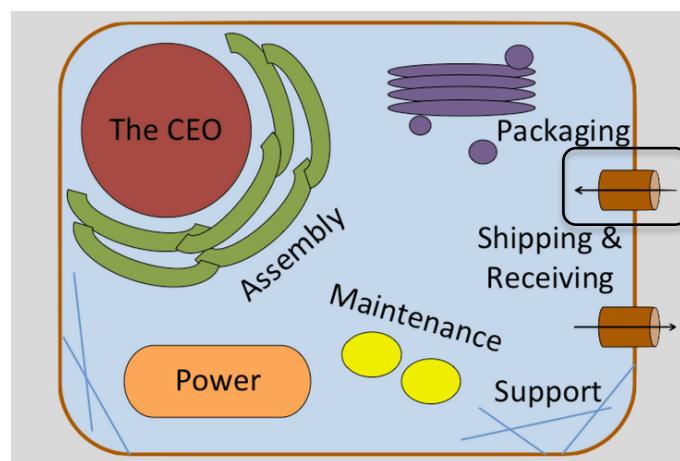
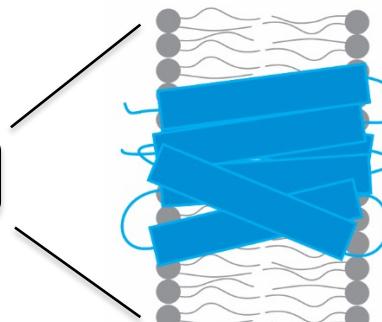
Proteome



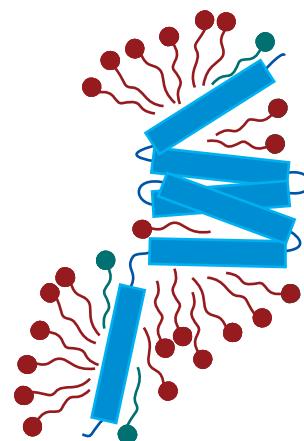
Drug targets



Protein structures

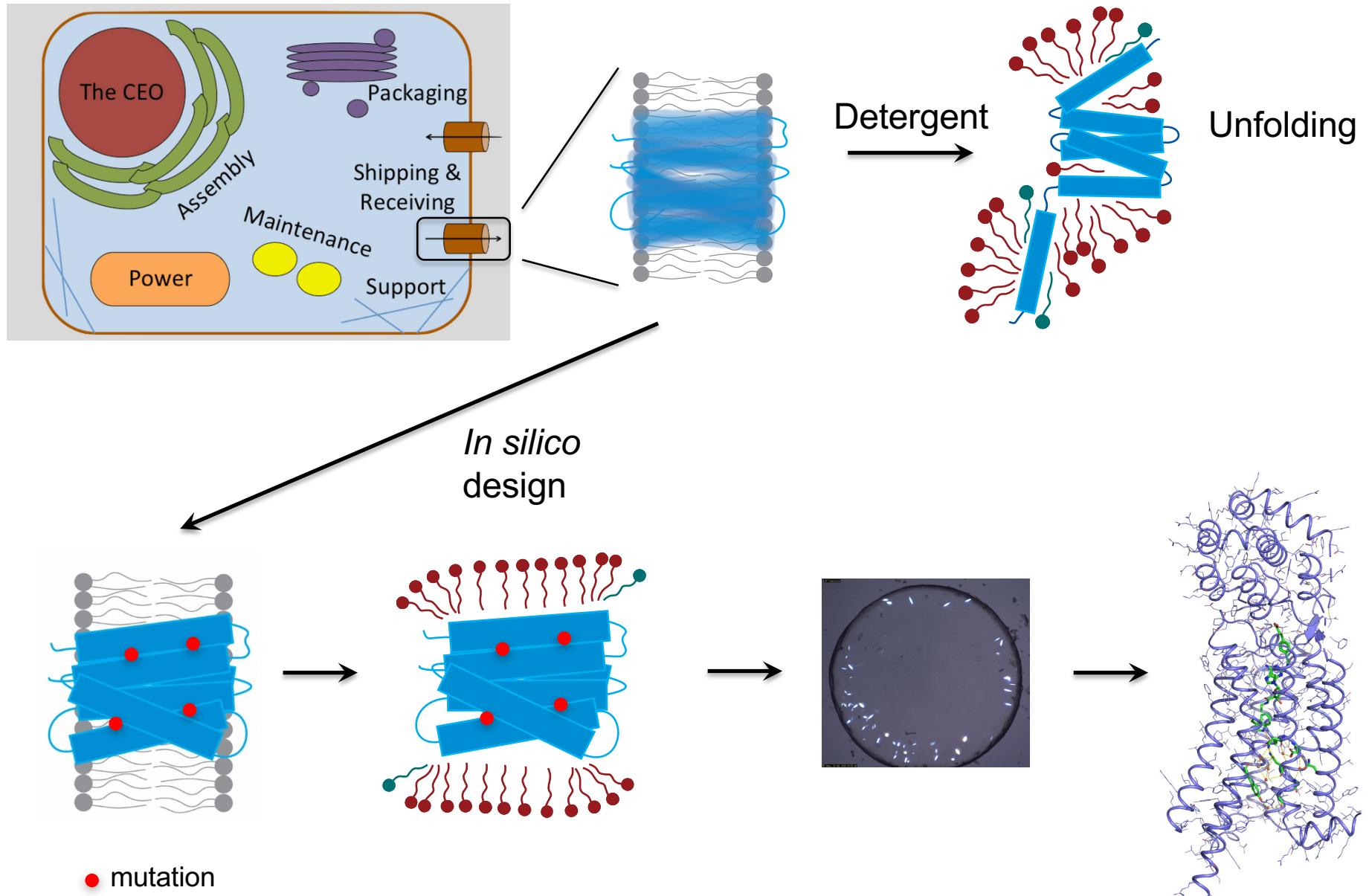


Detergent extraction



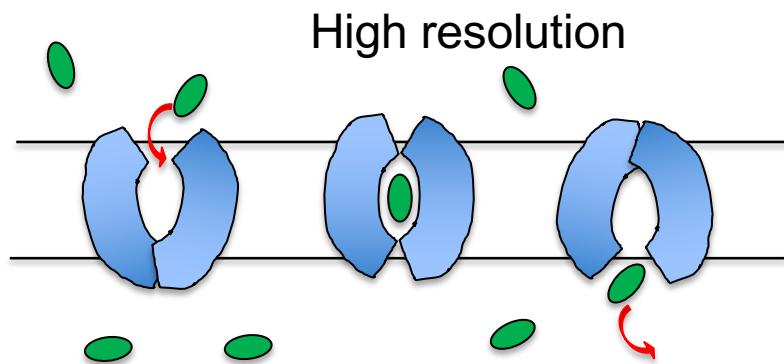
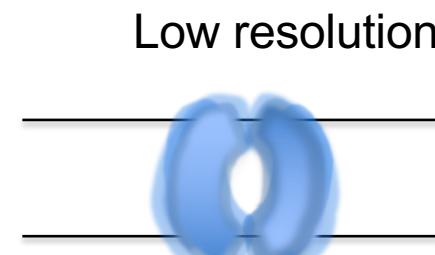
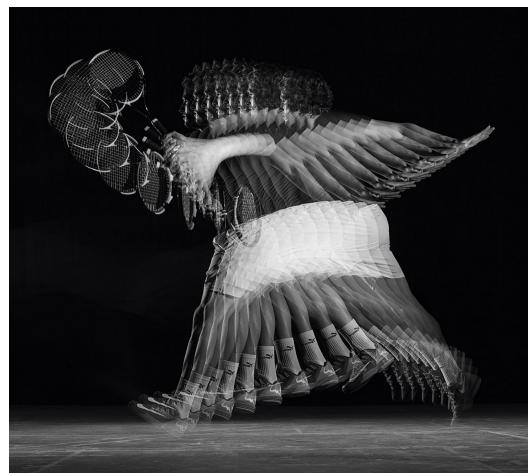
Unfolding

Membrane protein stabilization by design

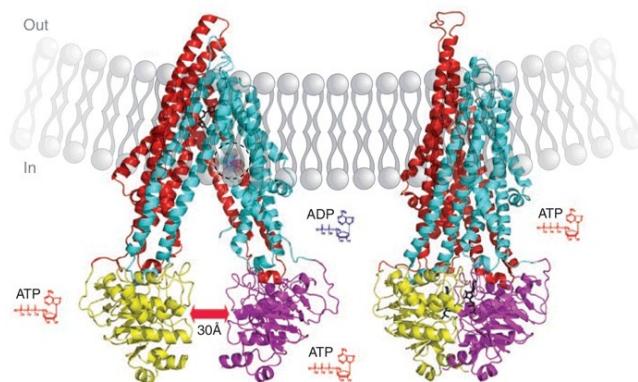
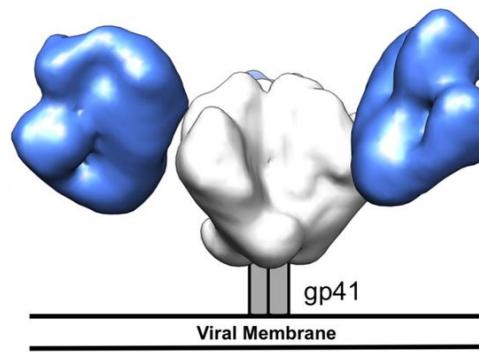


(PNAS 2012; Nature 2020)

Membrane protein challenges: motions

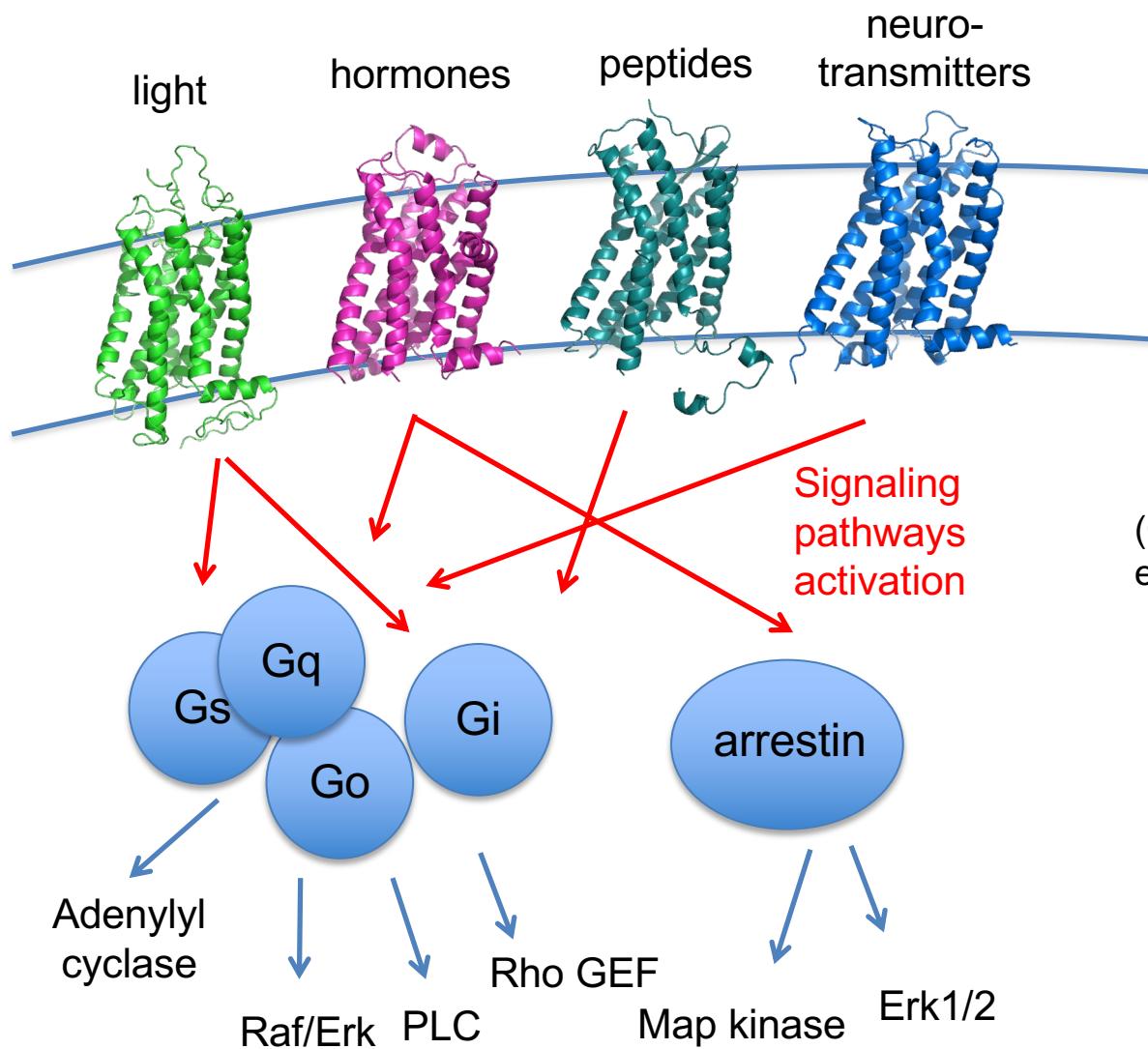


J-Y Lemoigne

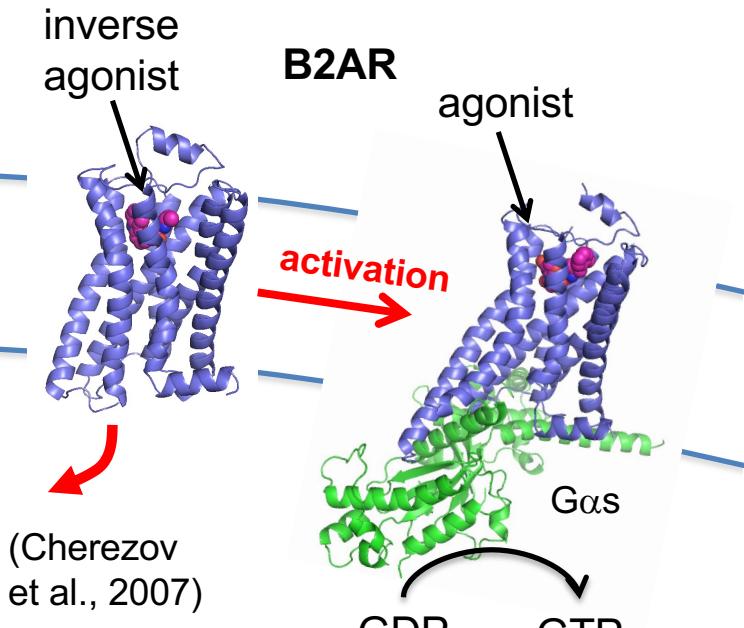


G protein coupled receptors are largest family of signaling receptors and drug targets

~800 human GPCRs

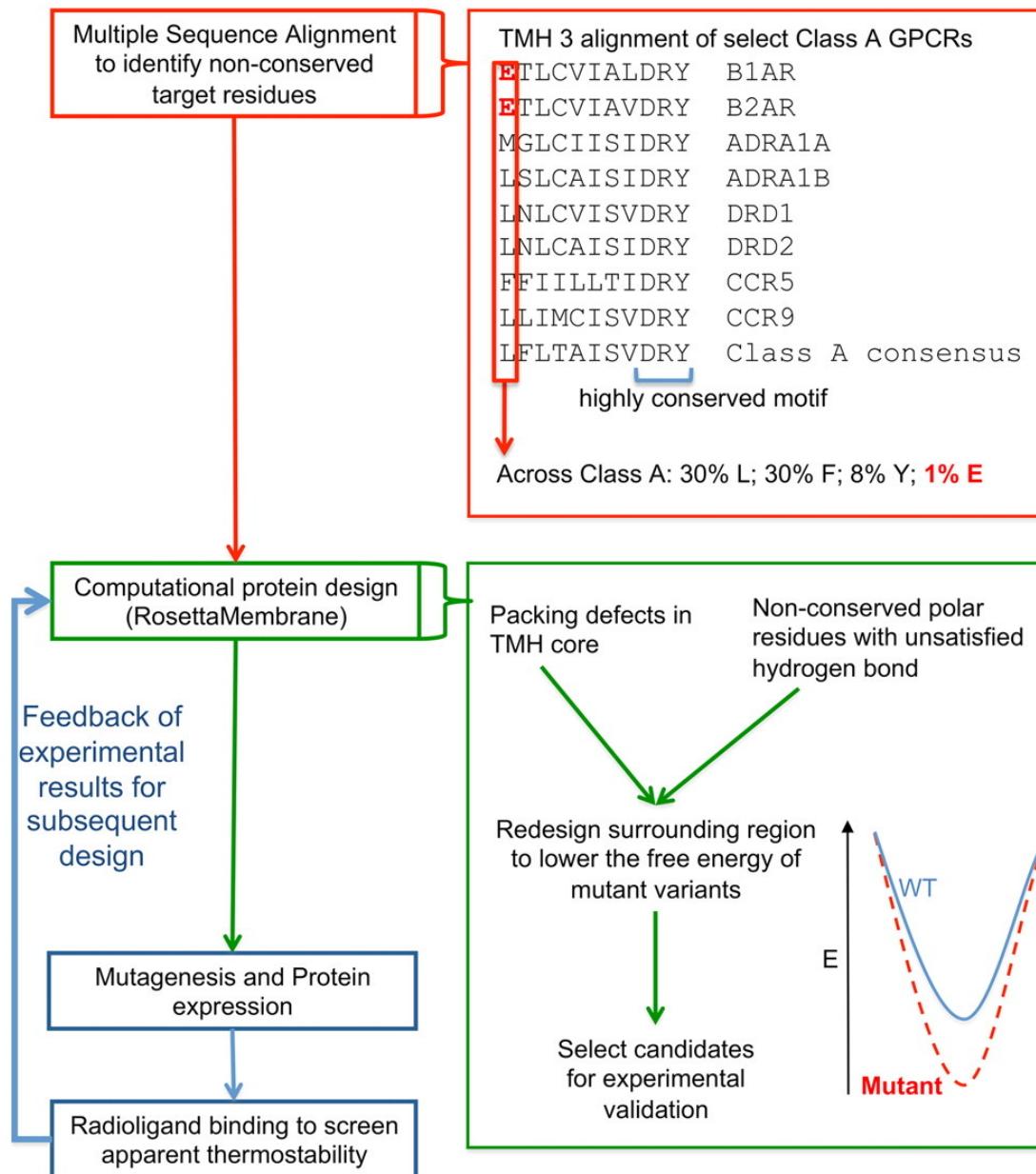


Prototypical GPCR



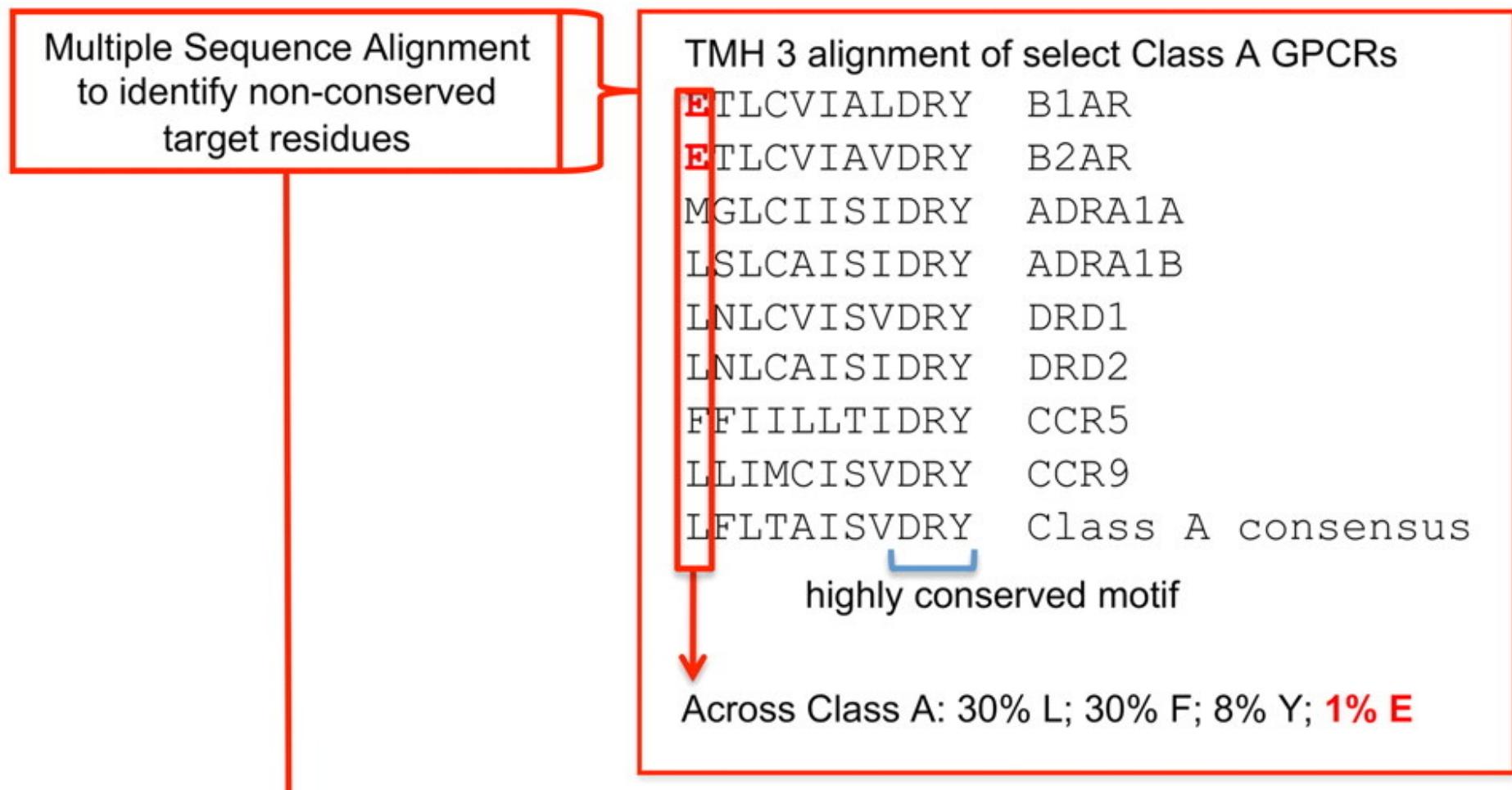
(Rasmussen et al., 2011)

Integrated computational / experimental approach to design stabilized membrane proteins



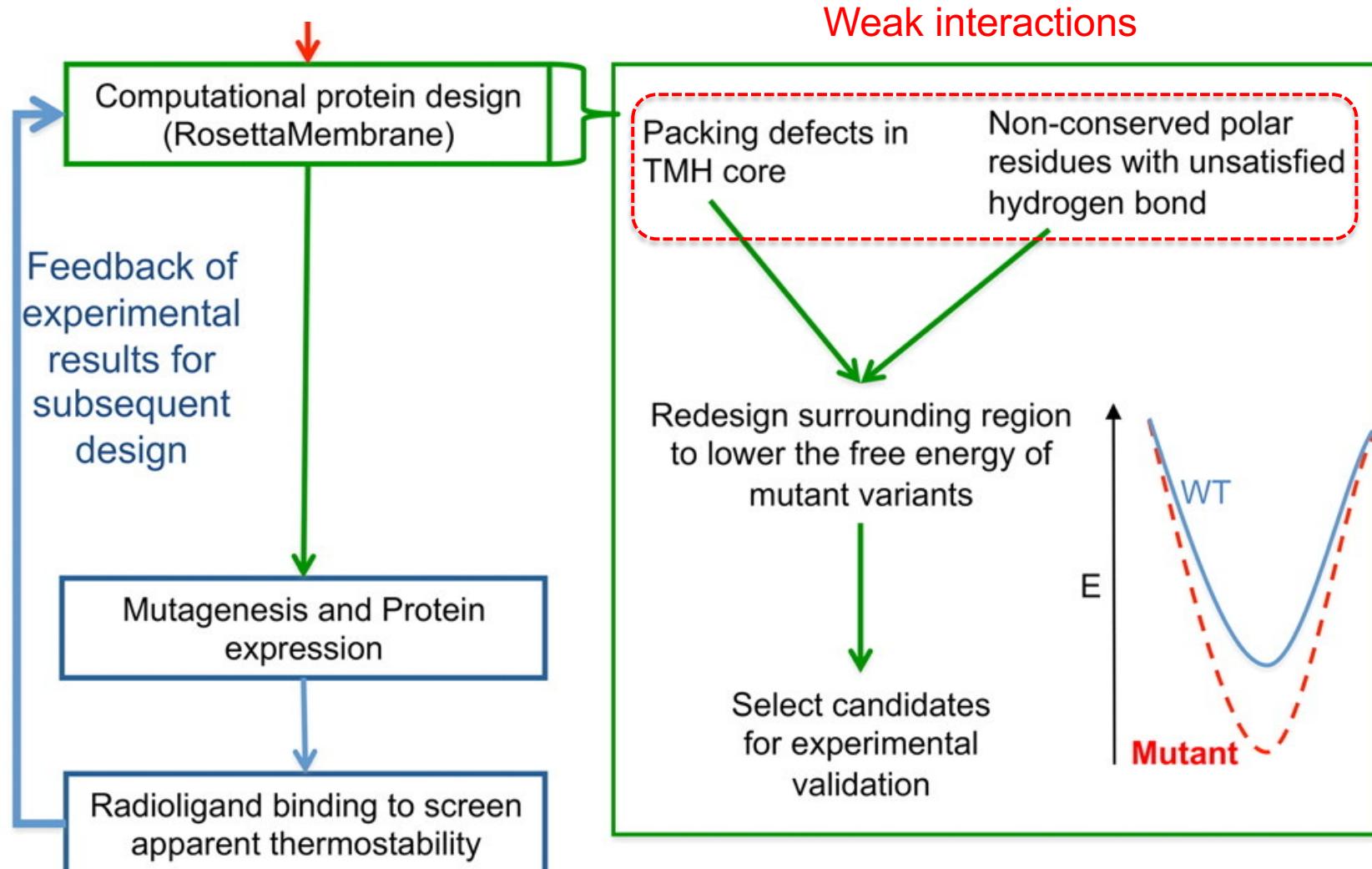
(Chen PNAS 2012)

Integrated computational / experimental approach to design stabilized membrane proteins



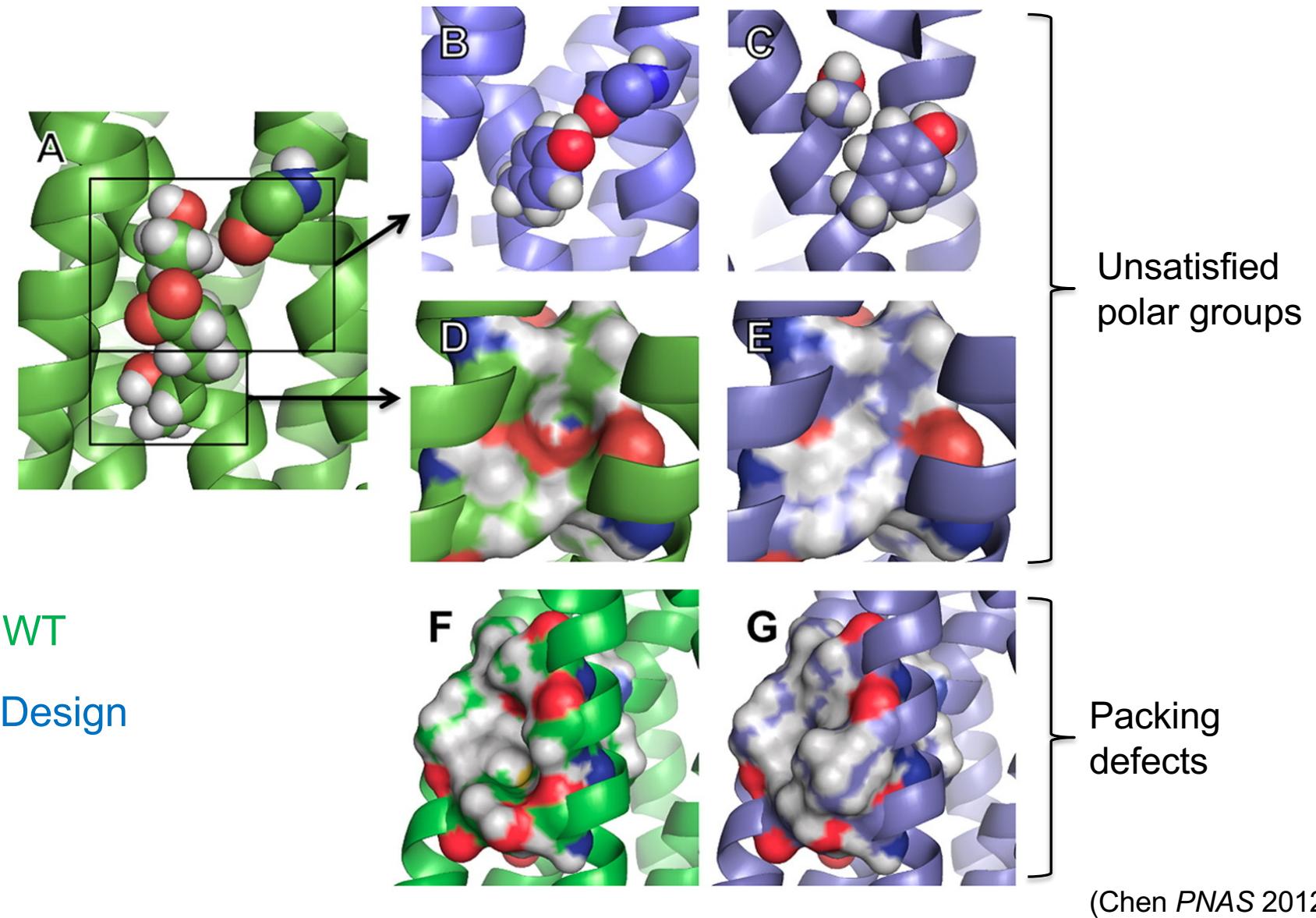
(Chen PNAS 2012)

Integrated computational / experimental approach to design stabilized membrane proteins

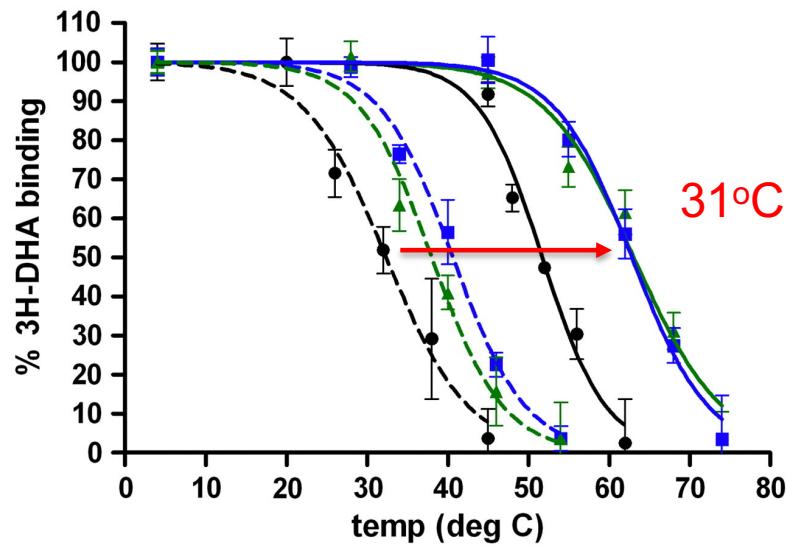
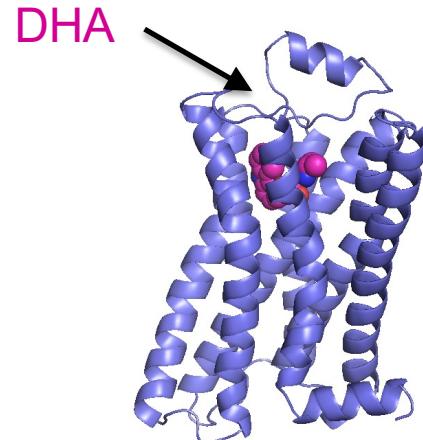


(Chen PNAS 2012)

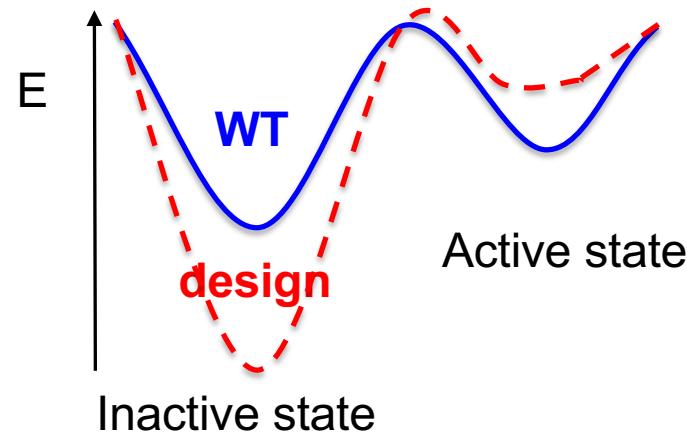
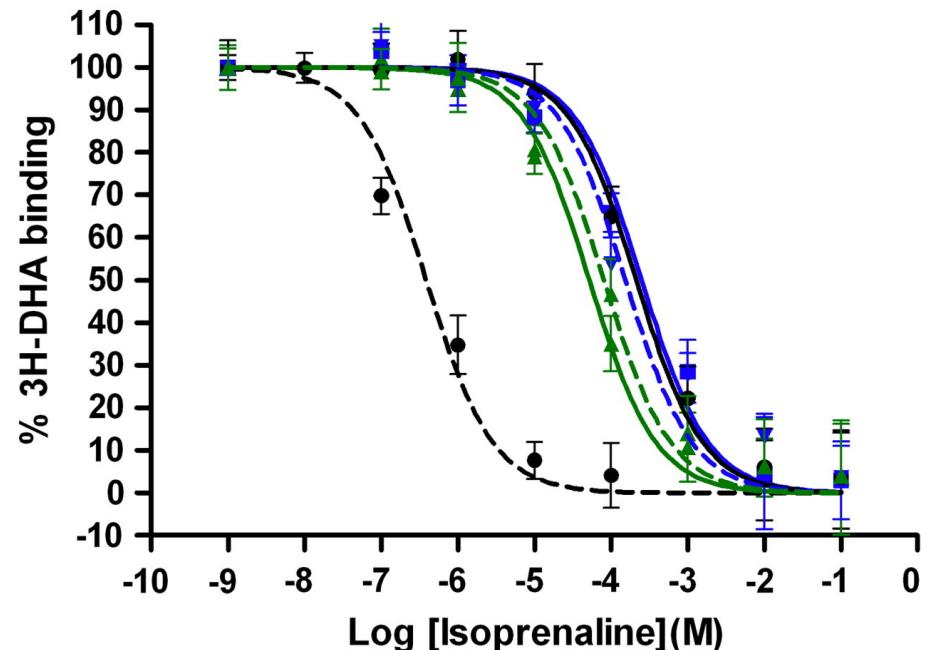
Stabilizing Designs Target Nonconserved Polar Residues and Packing Defects



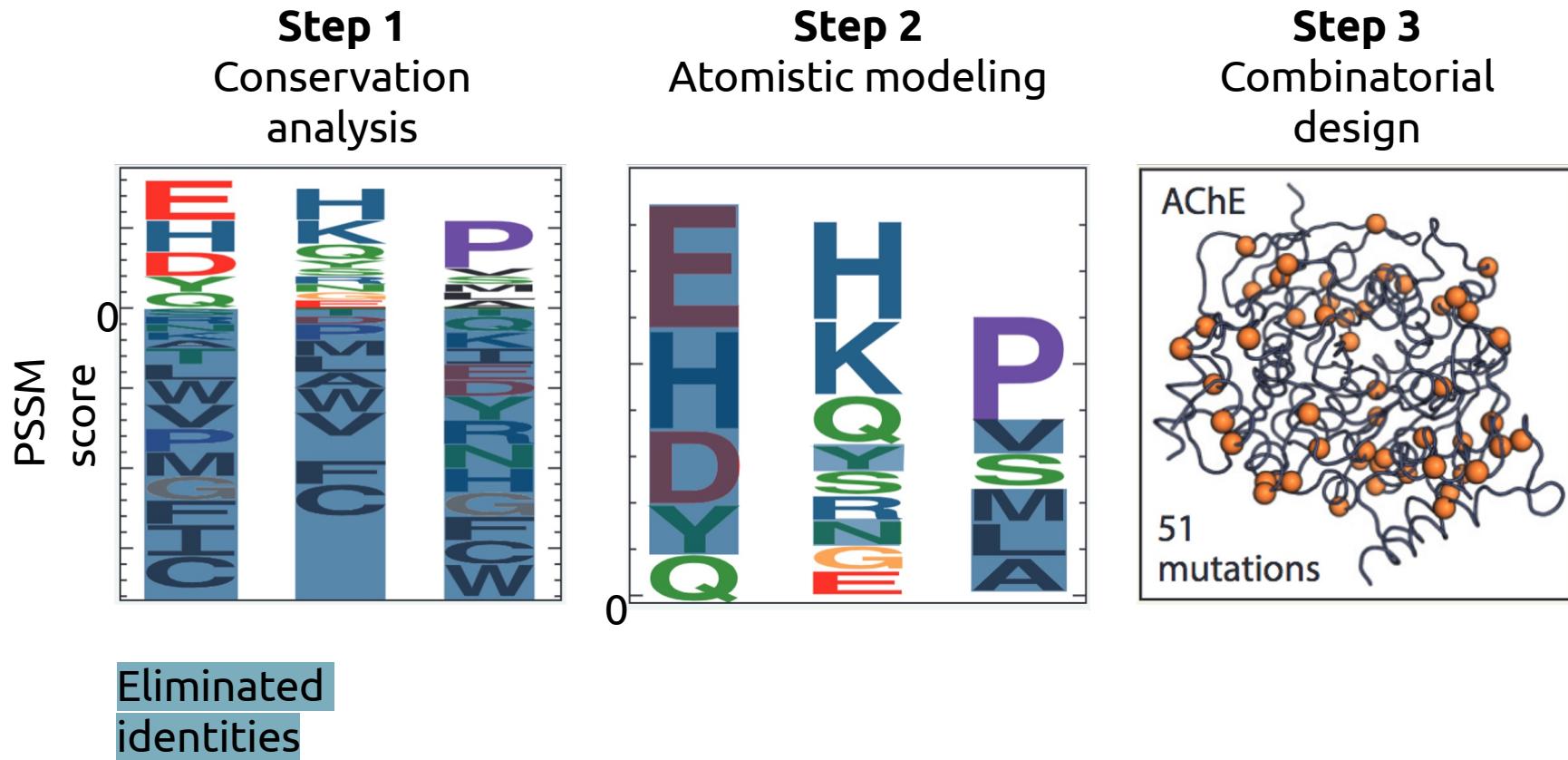
Designed GPCR stabilized and specifically locked in the ligand bound state



(Chen PNAS 2012)

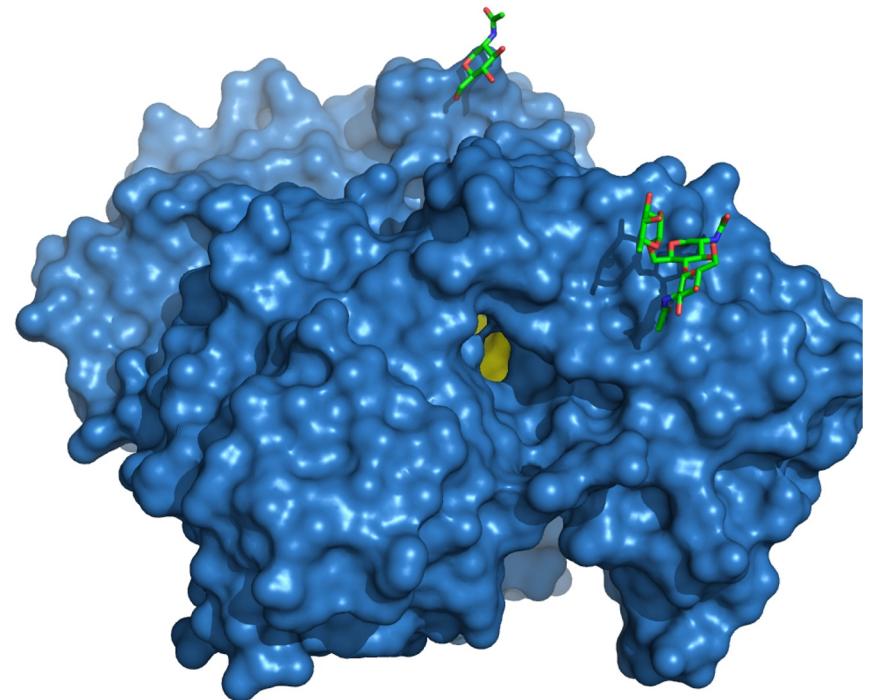


The Protein Repair One-stop Shop (PROSS) algorithm



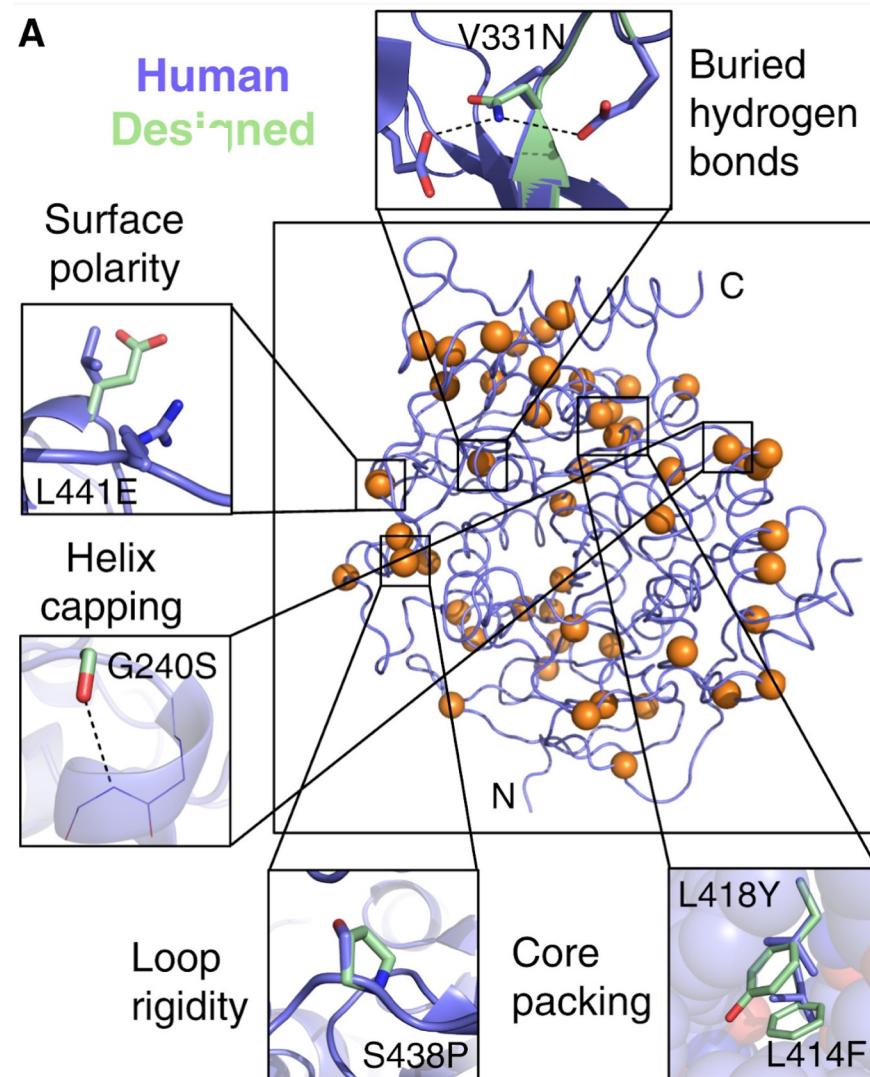
hAChE is an essential & very challenging enzyme

- Essential role in neuromuscular junctions
- Target of nerve agents
- >500 aa
- Multiple disulphides & glycosylation sites
- Active site buried 20 Å from surface

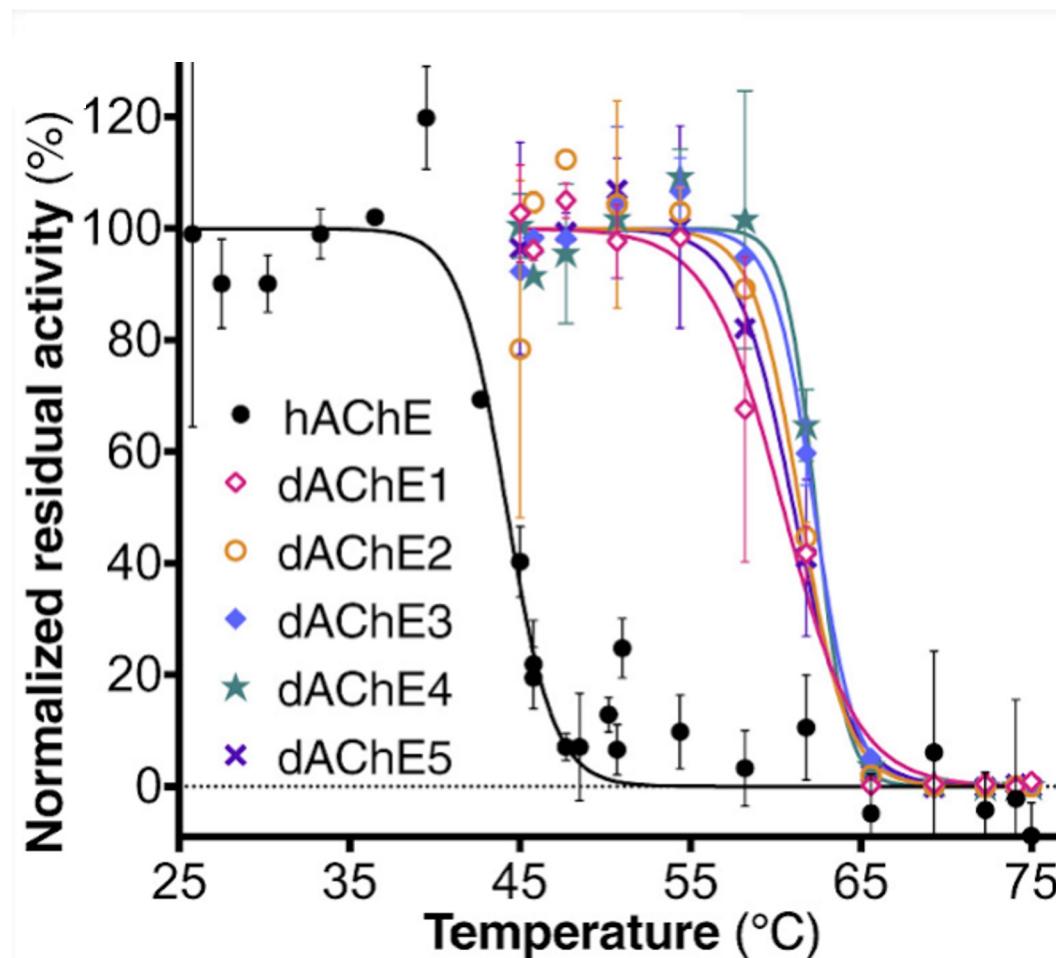


Active site
Glycosylation sites
Disulphides

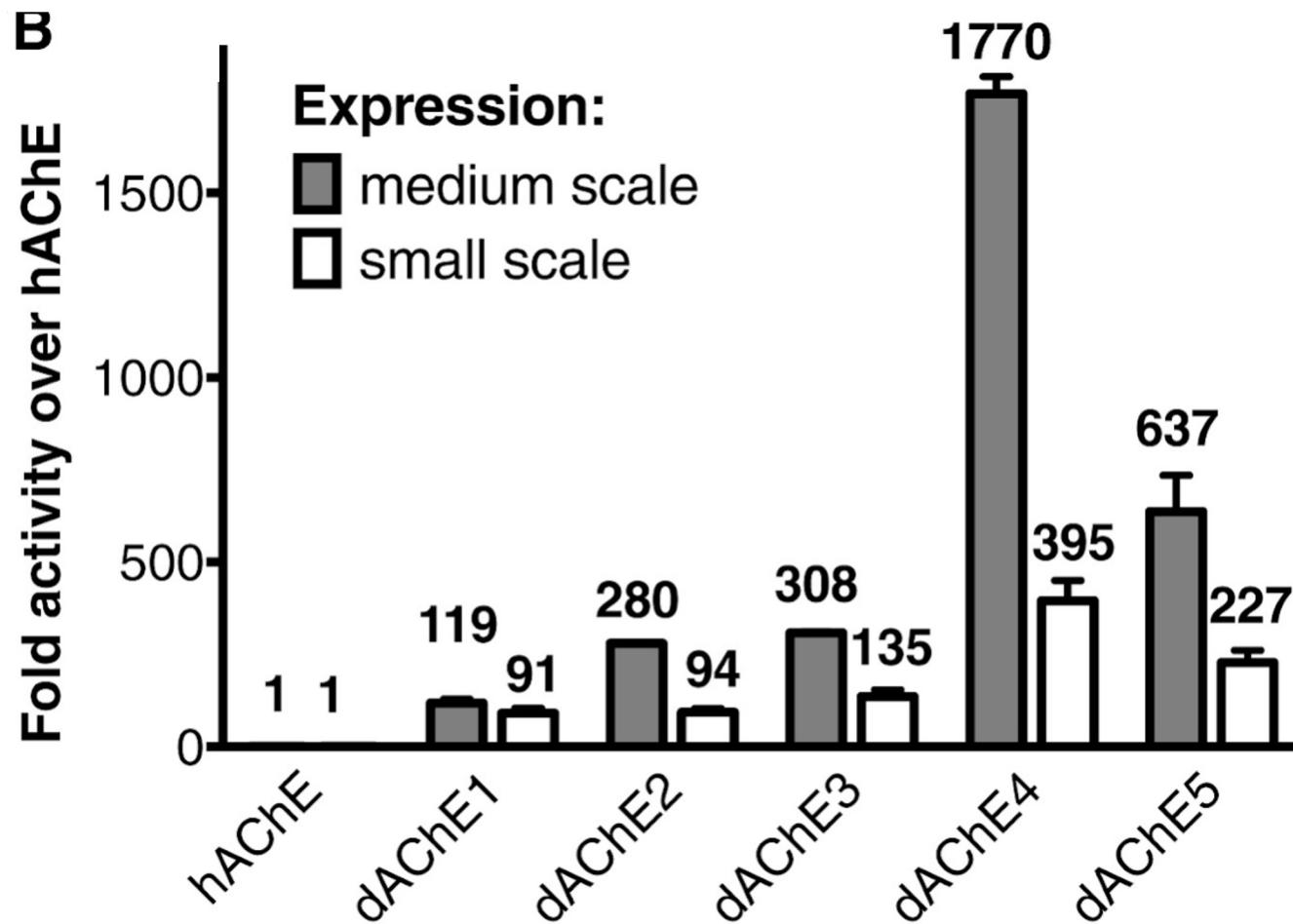
Best design: 51 simultaneous mutations relative to hAChE



All designs are fully functional & more stable



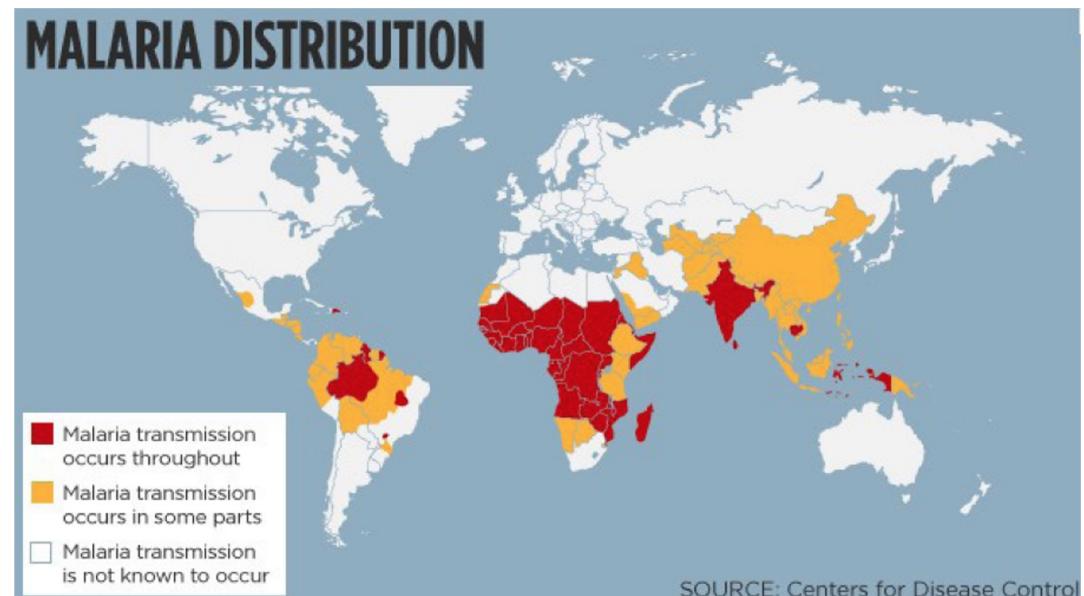
Dramatic improvement in bacterial expression levels



Collaboration with Dan Tawfik (Weizmann)

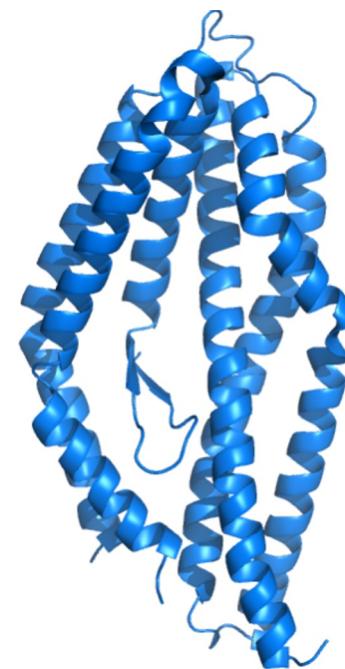
Malaria is the most virulent parasitic disease; no effective vaccine

- >3 billion people at risk
- >200 million clinical cases per year
- ~500,000 deaths per year, mostly of children



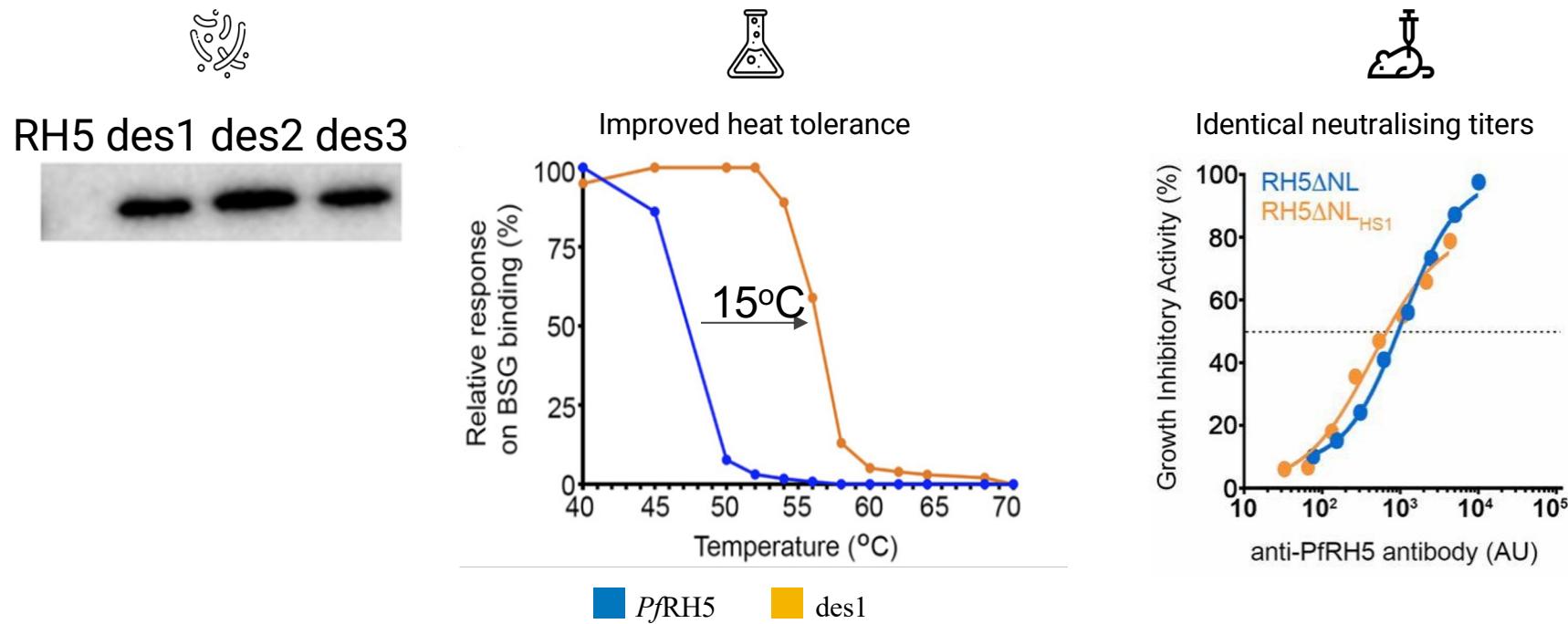
PfRH5: The prime vaccine candidate for the blood-stage

- Challenging to develop:
- Unstable & requires expensive insect-cell expression
- Vaccine requirements: cost-effective microbial expression; stability $> 40^{\circ}\text{C}$



Wright..Higgins *Nature* 2015

Design is efficiently produced in bacteria & functionally identical to *PfRH5*



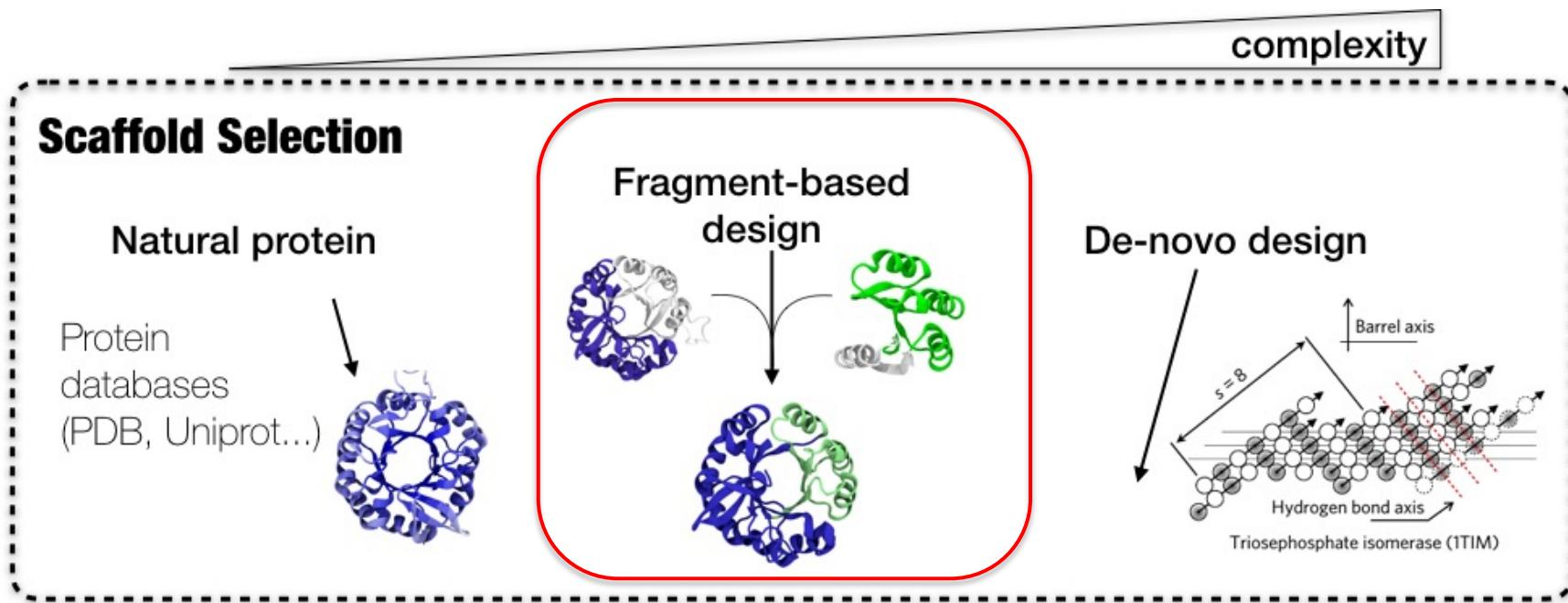
Protein Design – Examples overview

Protein design: Design a sequence that fits to a given structure

1. Design protein stability (membrane proteins)

2. Design new protein folds (protein chimera; de novo design; ANNs)

Protein fold design approaches

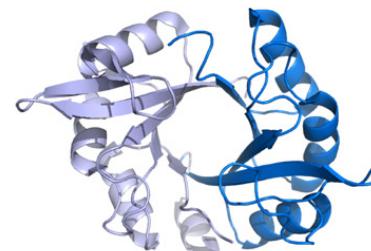


Design by mimicking natural evolution of proteins through duplication & recombination

Duplication



→
duplicated &
optimized



Höcker et al. (2001)
Nat Struct Biol
Höcker et al. (2009)
Biochemistry

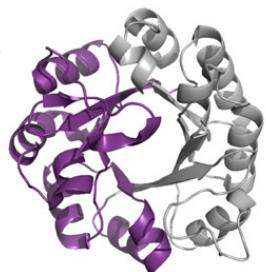
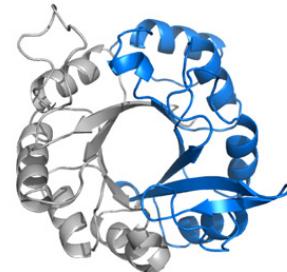


→
consensus
triplicate

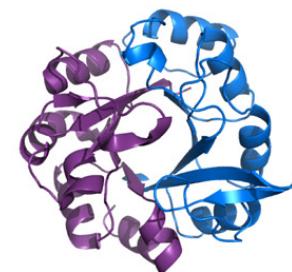


Broom et al. (2012)
Structure
Lee & Blaber (2011)
JMB

Recombination within one fold



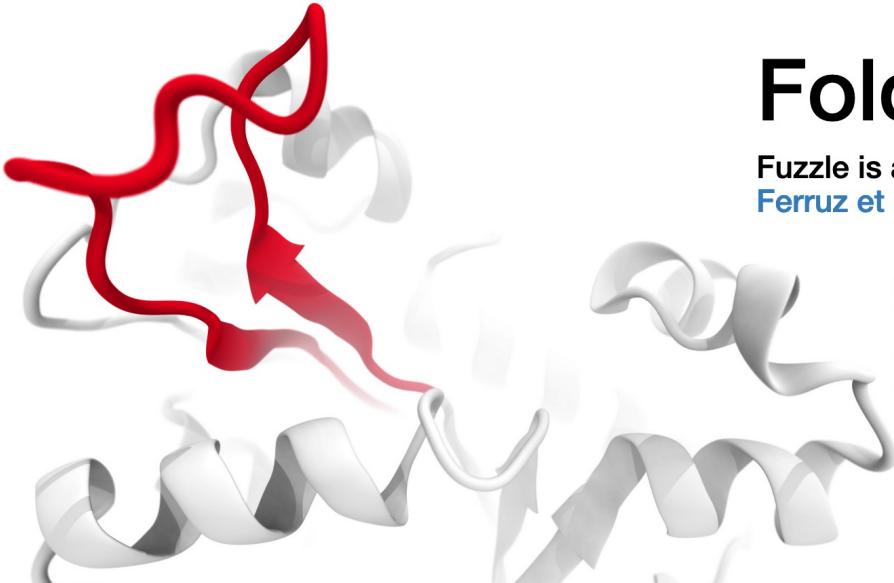
→
recombined &
functionalized



Höcker et al. (2004)
PNAS
Claren et al. (2009)
PNAS

Höcker (2014) *Curr Opin Struc Biol*

<https://fuzzle.uni-bayreuth.de/>



Fold Puzzle Database

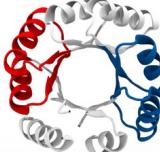
Fuzzle is a database of evolutionary related protein fragments
[Ferruz et al. \(2020\)](#)

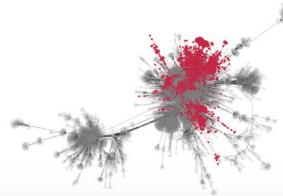
Search for related Entries in the Database:

Insert PDB, Sequence, or SCOPe domain

Examples: [1pky](#), [c.23](#), [Flavodoxin Sequence \(2HNA\)](#)

[Learn more »](#)

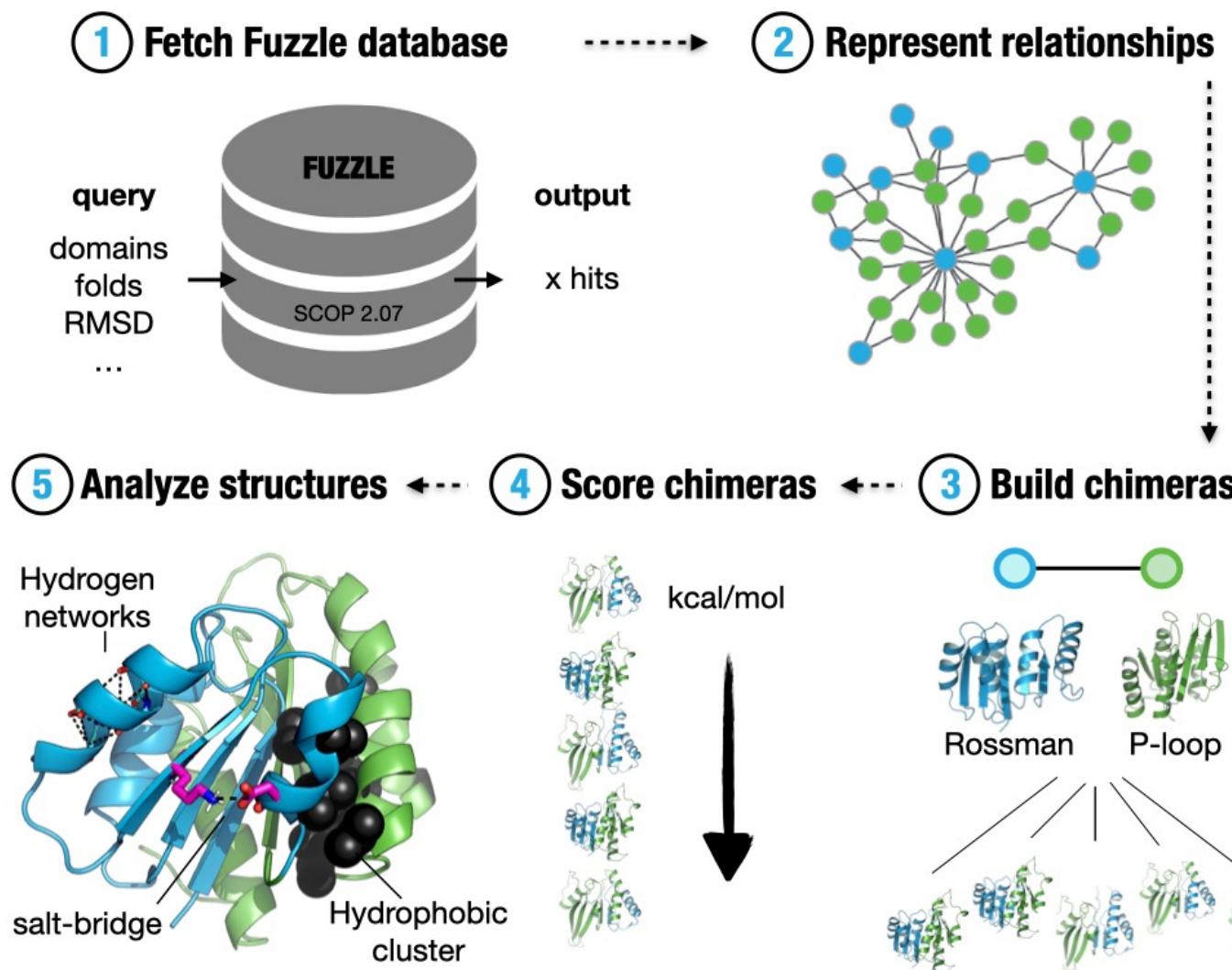




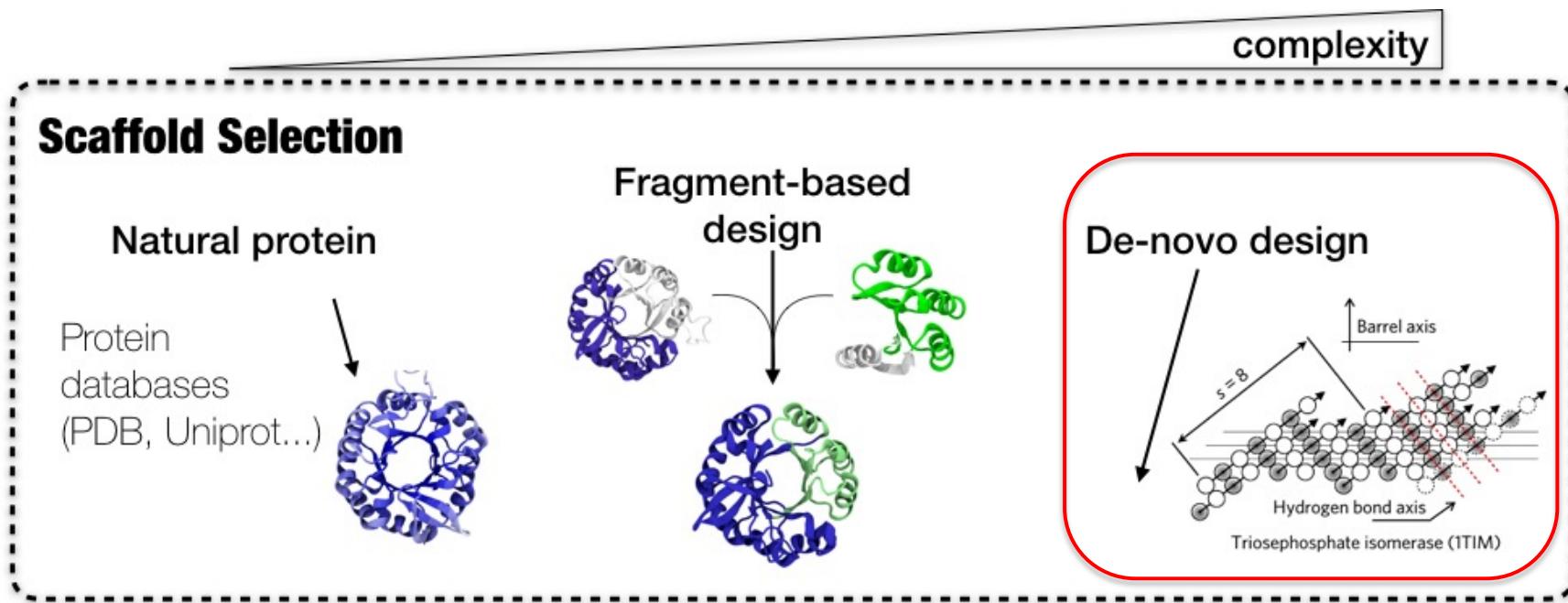
<https://fuzzle.uni-bayreuth.de/hh/StatClass>

Ferruz, Lobos, Lemm, Toledo-Patino, Farias-Rico, Schmidt, Höcker, (2020) *J Mol Biol* 432: 3898-914

Design of protein chimeras with ProtLegō



Protein fold design approaches



TOP7 – Design of a new fold

Kuhlman, Dantas, ... & Baker Science, 2003

1. Define new scaffold not observed in Nature
2. Find sequence that will fold into scaffold

Approach: Iterate between

Sequence design (with fixed backbone structure) and

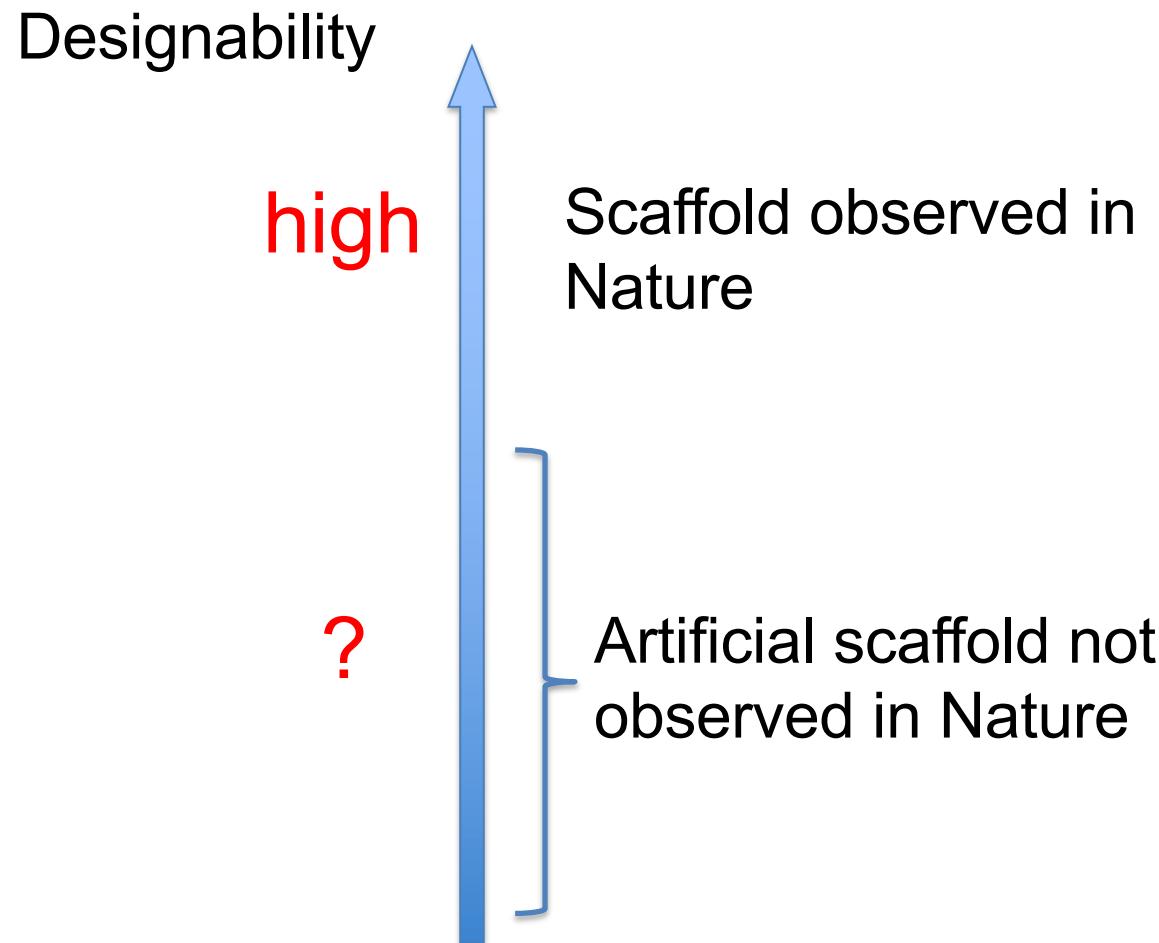
Structure prediction (with fixed sequence)

Why do we need a structure prediction step?

Because we are starting with a synthetic scaffold
that is a very low resolution guess

Design of a new fold: the designability problem

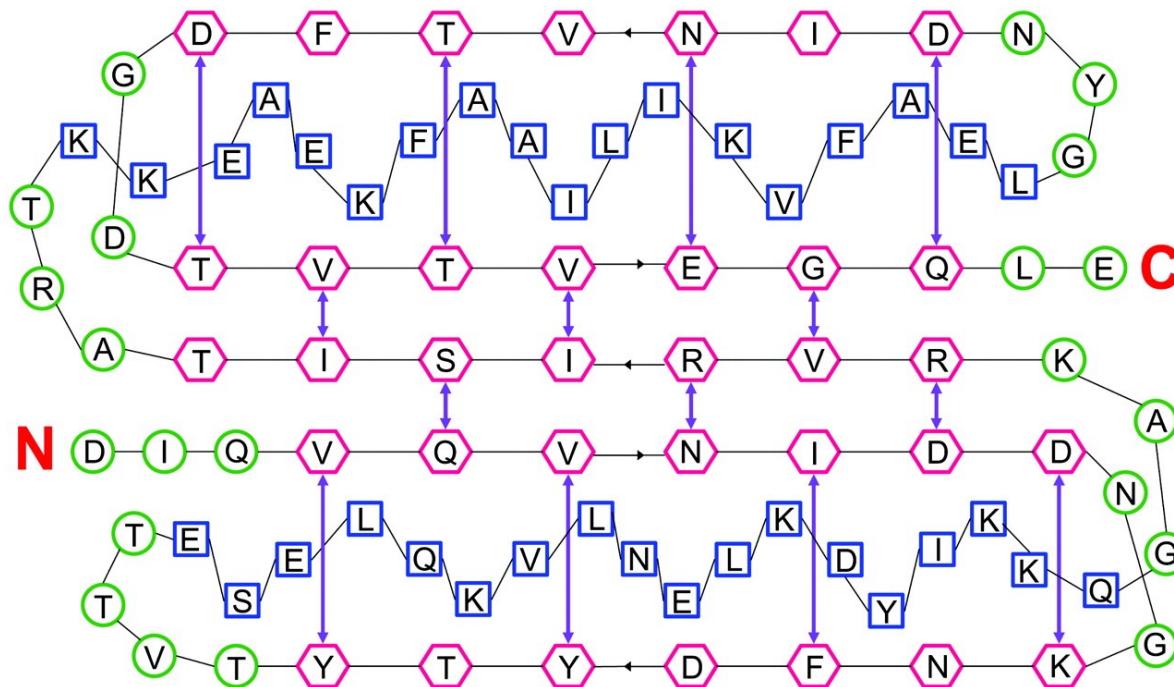
Designability: the probability to find a (# of) sequence folding into a specific scaffold



TOP7 – Design of a new fold

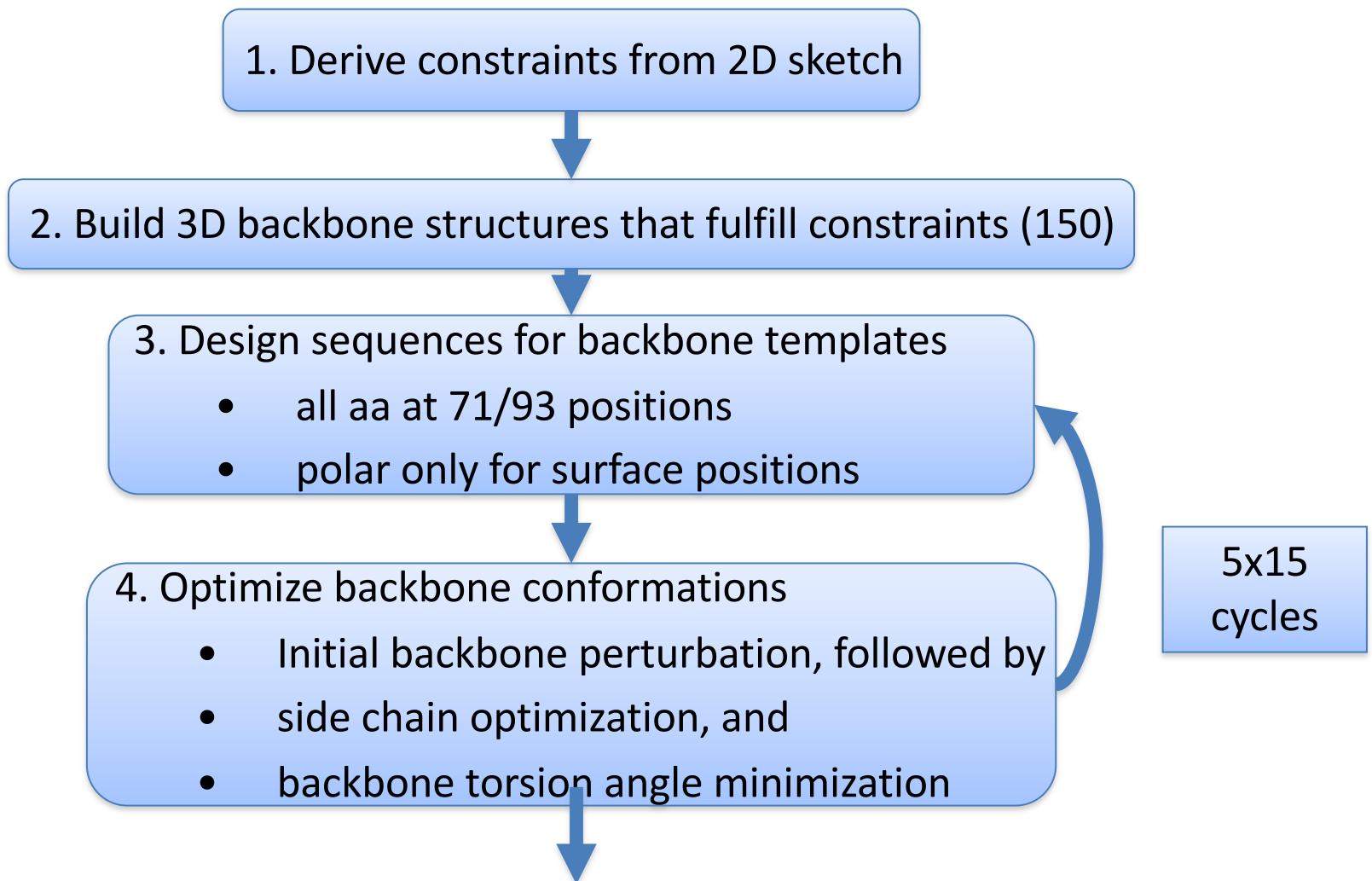
Kuhlman, Dantas, ... & Baker Science, 2003

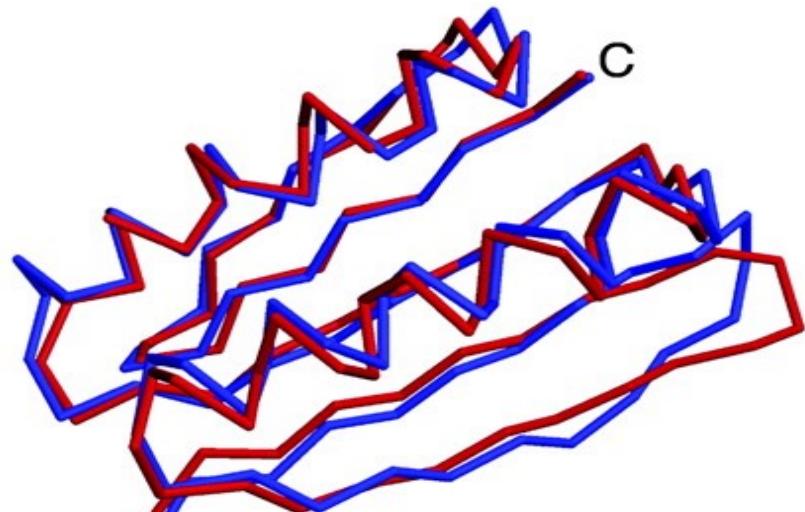
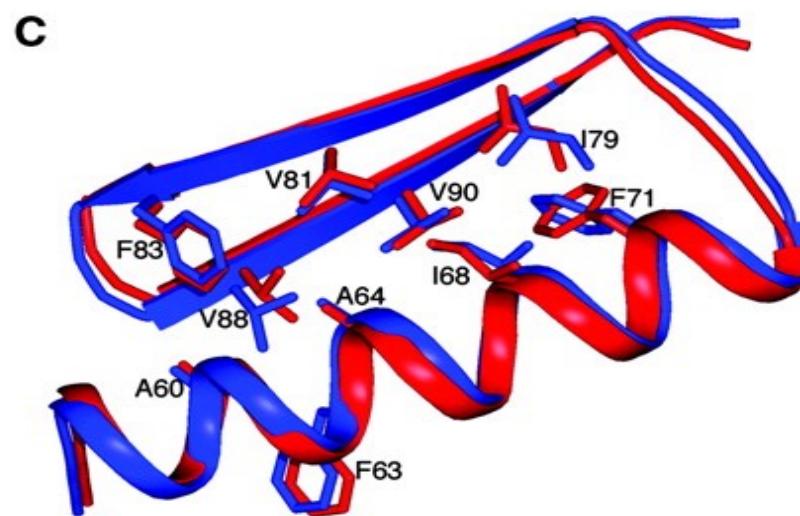
2D sketch of a novel fold



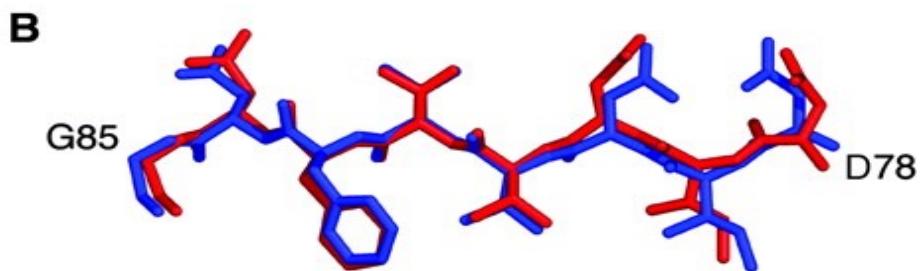
Legend: (hexagon, strand; square, helix; circle, other). Hydrogen bond partners are shown as purple arrows. The amino acids shown are those in the final designed (Top7) sequence

Creation scheme of TOP7





Blue: model; Red: xray



Assessment of Design

(1) Structure

- 1.17 Å backbone rmsd
- highly accurate!

(2) Stability

- stable at 98°C!
- stable at ~5M Gu-HCl!

TOP7

- No sequence memory → more stringent test of force field and minimization procedure
- Optimized steric packing prevents molten globules
- No similarity to natural sequences (psiblast)

→ **What can we learn from a protein that did not undergo natural selection??**

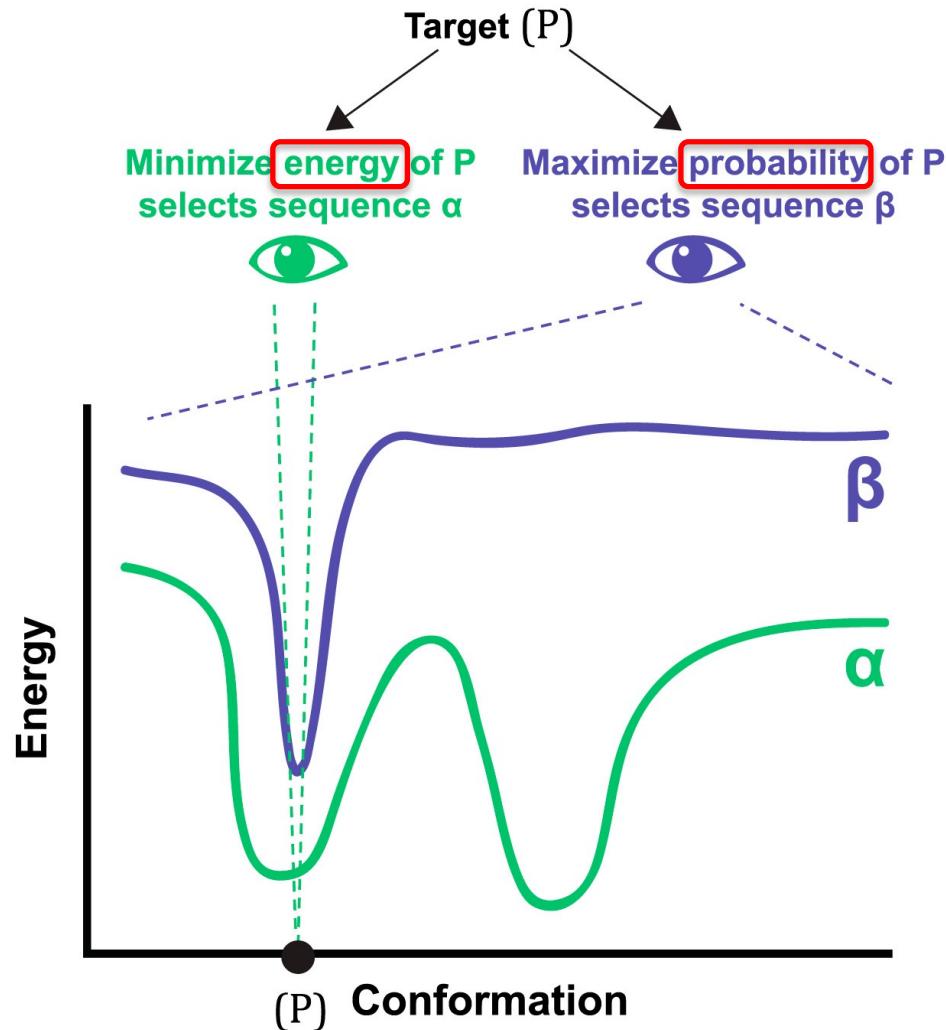
Protein Design – Examples overview

Protein design: Design a sequence that fits to a given structure

1. Design protein stability (membrane proteins)

2. Design new protein folds (protein chimera; de novo design; ANNs)

Protein sequence design by conformational landscape optimization to prevent alternative conformations

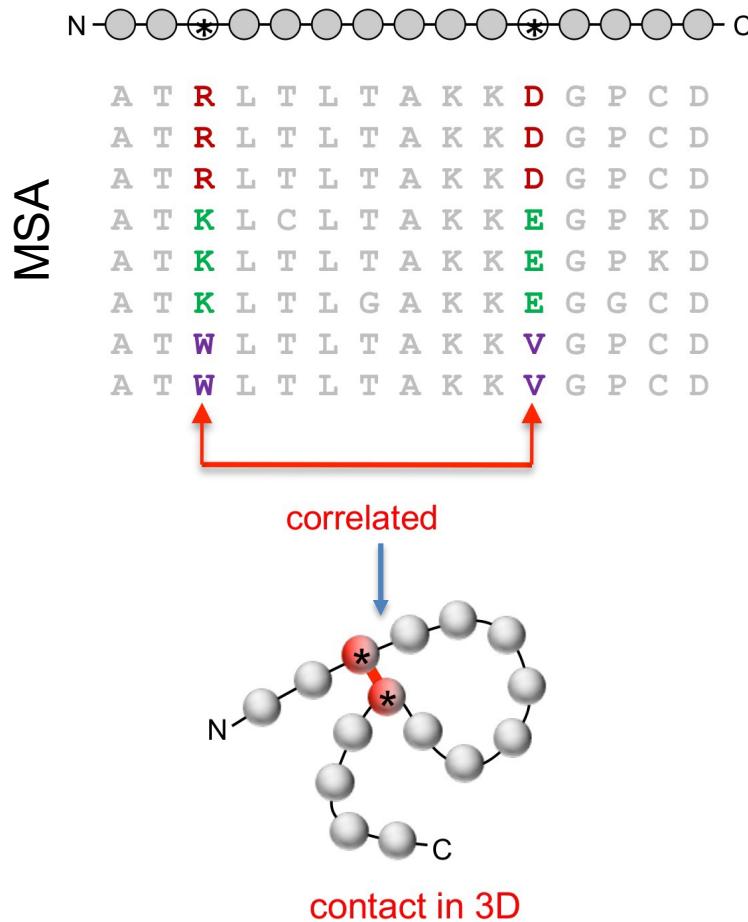
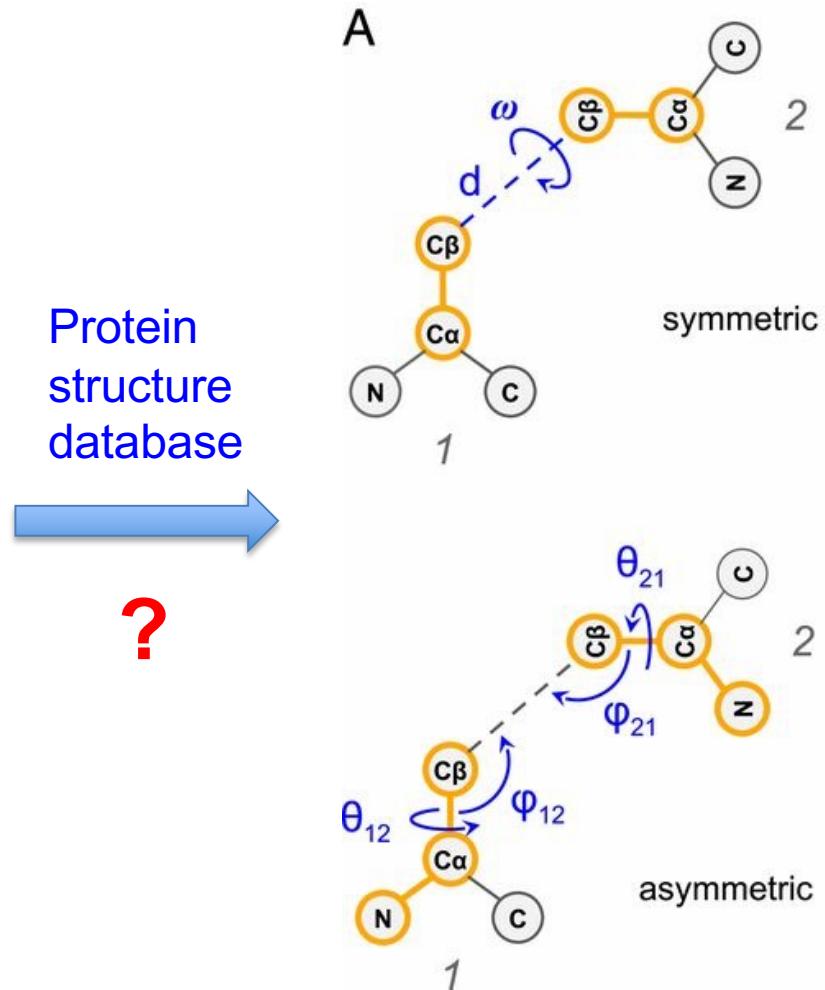


Using trRosetta: predicts the probability of residue–residue distances (Q) and orientations for a sequence (X).

Rationale: Probability distributions over possible distances and orientations should contain information about alternative conformations

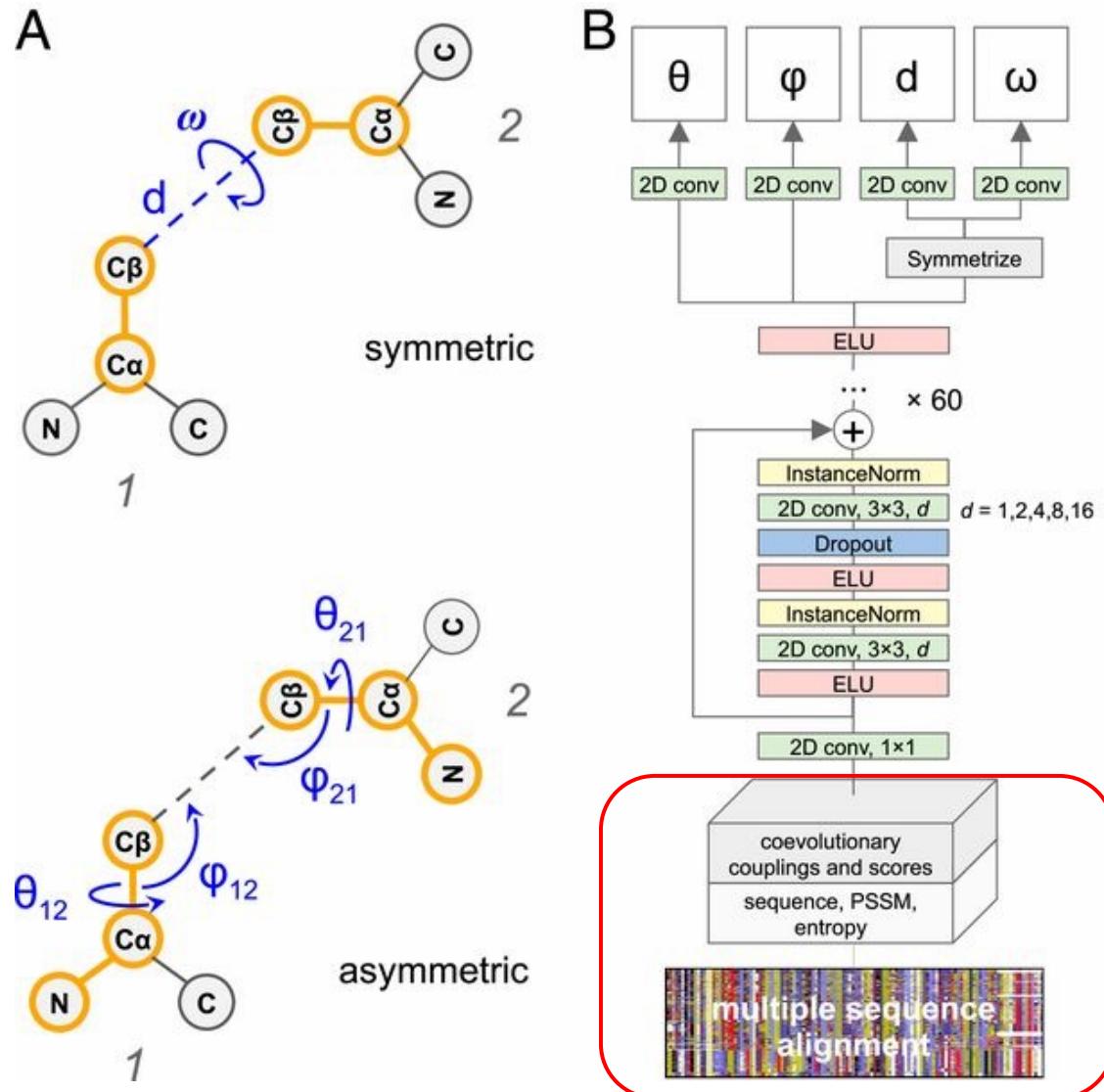
Convolutional neural network trRosetta: predicting interresidue geometries and protein 3D structure from a multiple sequence alignment

Protein sequence database:
Contact prediction from co-evolution



d , ω , θ_{12} , φ_{12} , θ_{21} , and φ_{21} fully define the relative positions of the backbone atoms of 2 residues

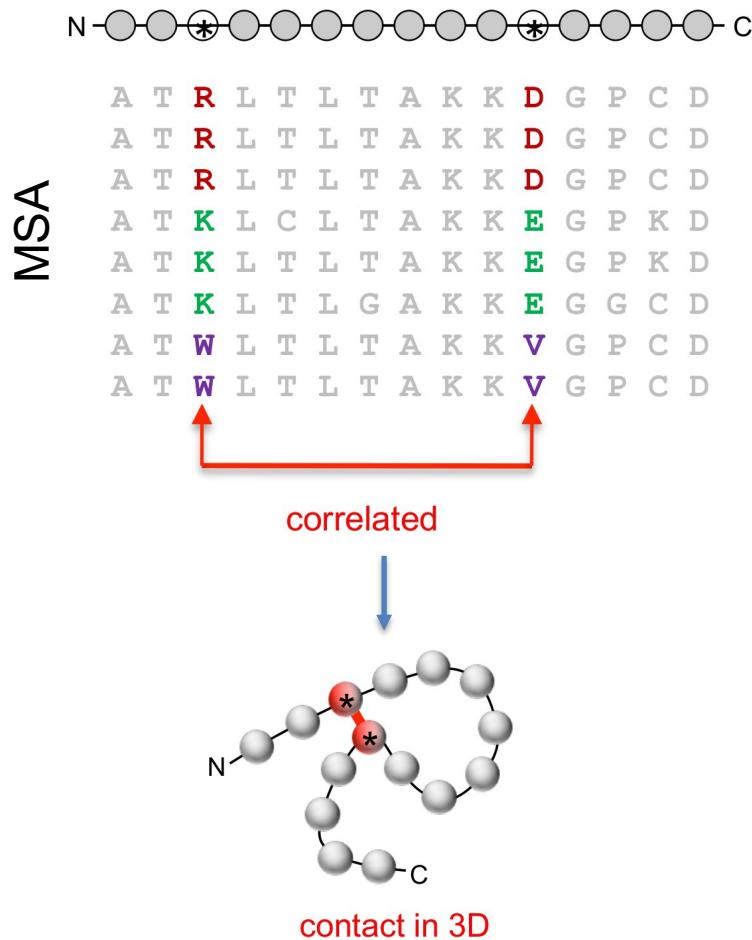
Convolutional neural network trRosetta: predicting interresidue geometries and protein 3D structure from a multiple sequence alignment



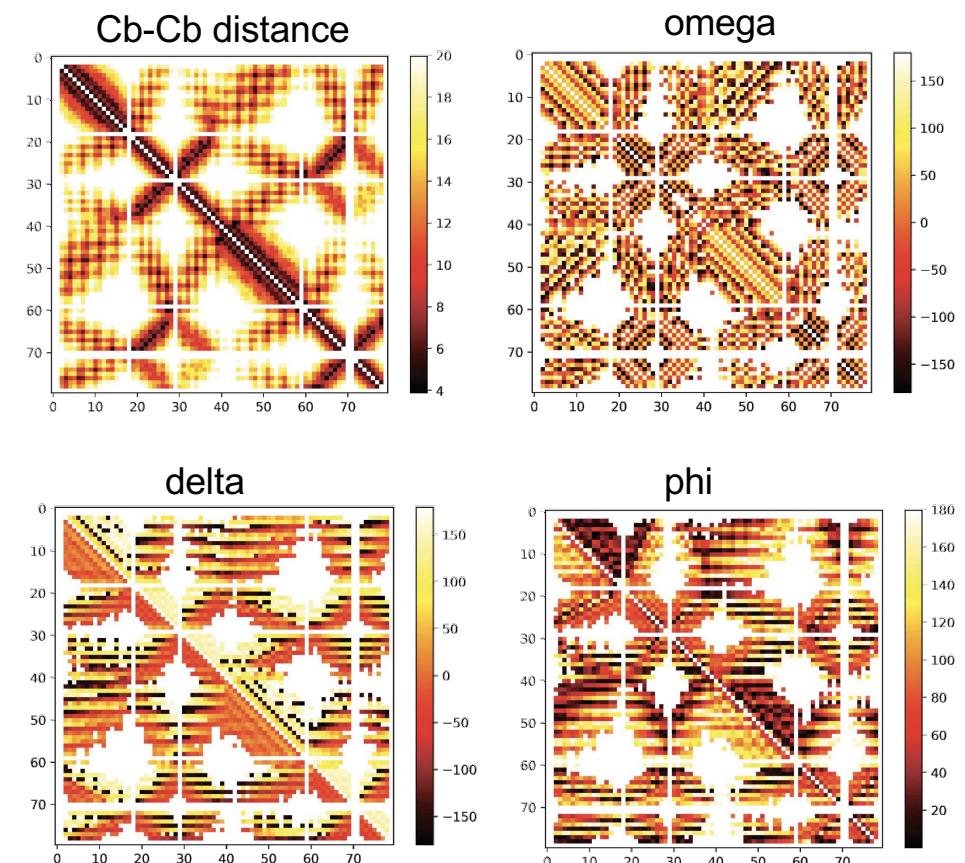
Can we train an ANN to learn distance and geometry from multiple sequence alignments?

Convolutional neural network trRosetta: predicting interresidue geometries and protein 3D structure from a multiple sequence alignment

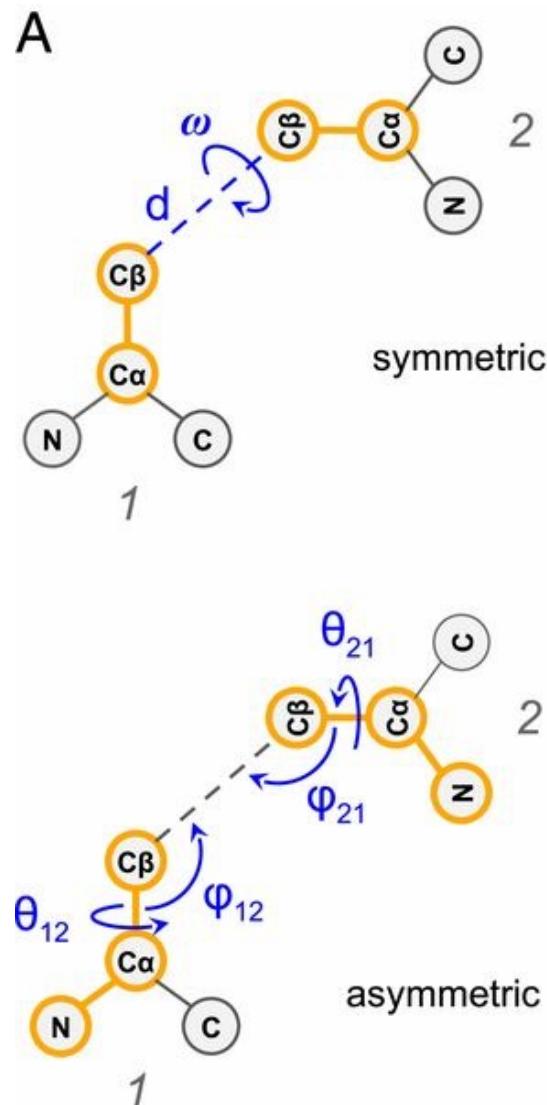
Contact prediction from co-evolution



All of the coordinates show characteristic patterns => ideal for training a deep neural network to predict them



Convolutional neural network trRosetta: predicting interresidue geometries and protein 3D structure from a multiple sequence alignment

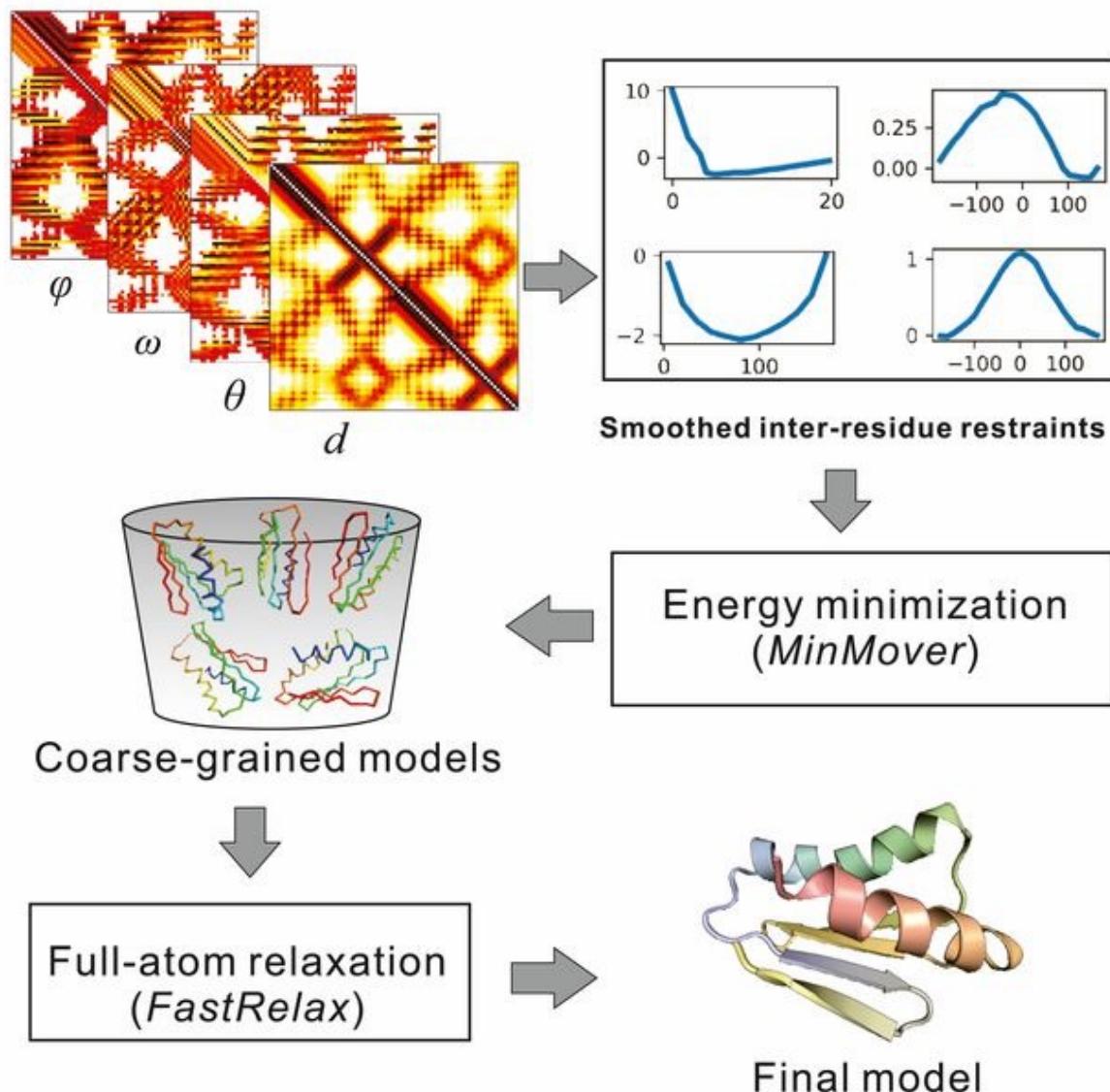


Stack of dilated residual-convolutional blocks that gradually transforms 1- and 2-site features derived from the MSA

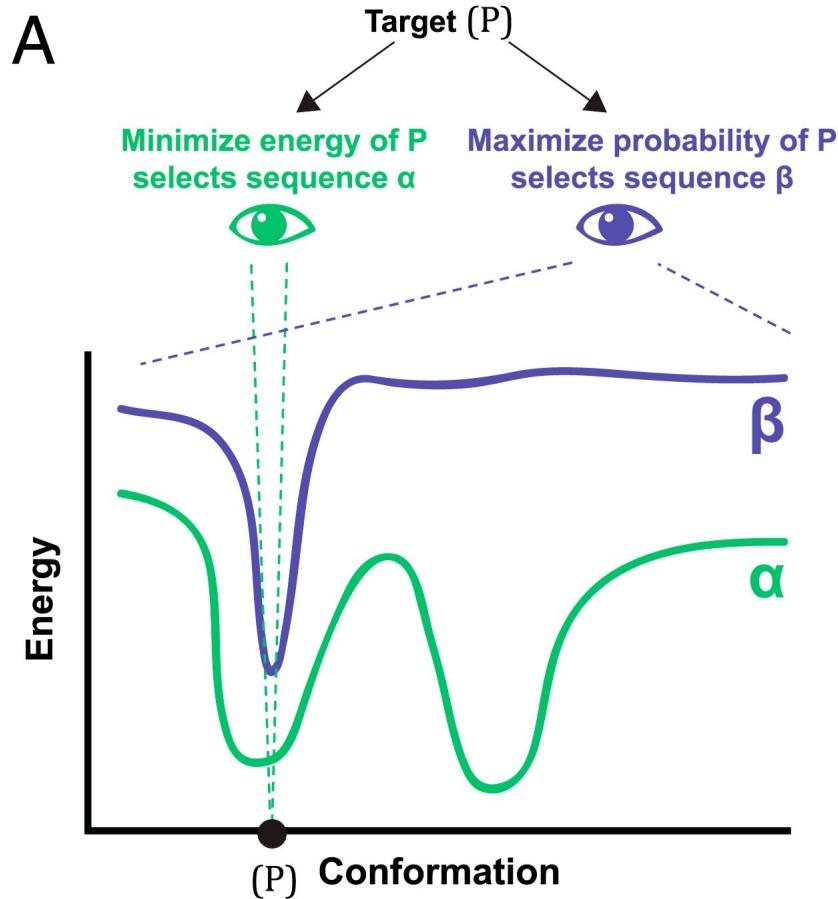
Training: simultaneous prediction of the 4 objectives on 16,047 protein chains with the average length of 250 amino acids for whose MSAs can be constructed

Loss over the 4 objectives

3D structure reconstruction using trRosetta



Protein sequence design by conformational landscape optimization



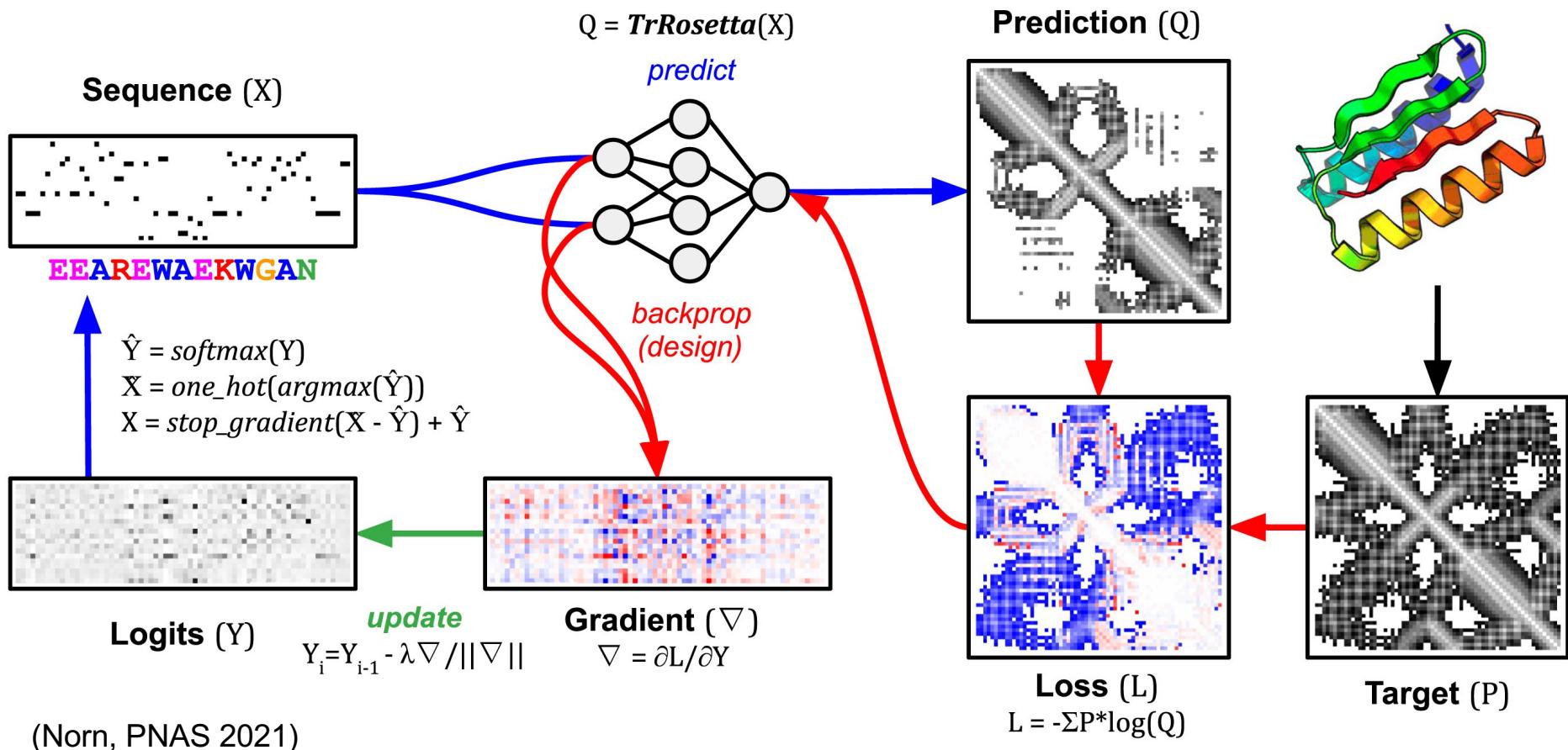
Solution:

directly optimize over all possible amino acid sequences and all possible structures in a single calculation by backpropagating gradients through trRosetta from the desired structure to the input amino acid sequence

Protein sequence design by conformational landscape optimization

Rationale: trRosetta predicts the probability of residue–residue distances (Q) and orientations for a sequence (X). Probability distributions over possible distances and orientations should contain information about alternative conformations

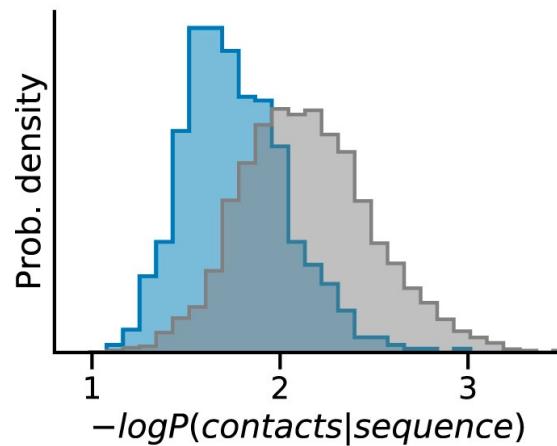
Overview of *trRosetta* fixed backbone sequence design method



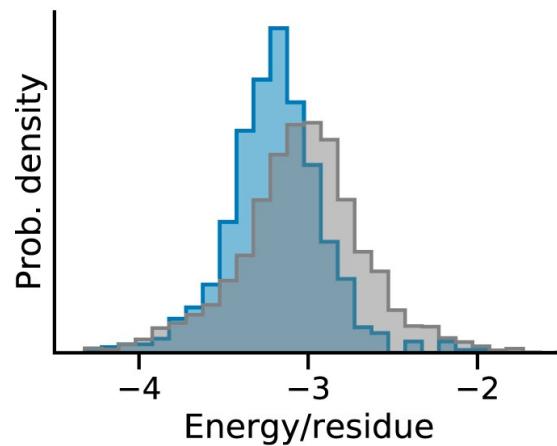
trRosetta predicts properties of the folding energy landscape

A

Energy landscape
favoring design
Energy landscape
incompatible with design

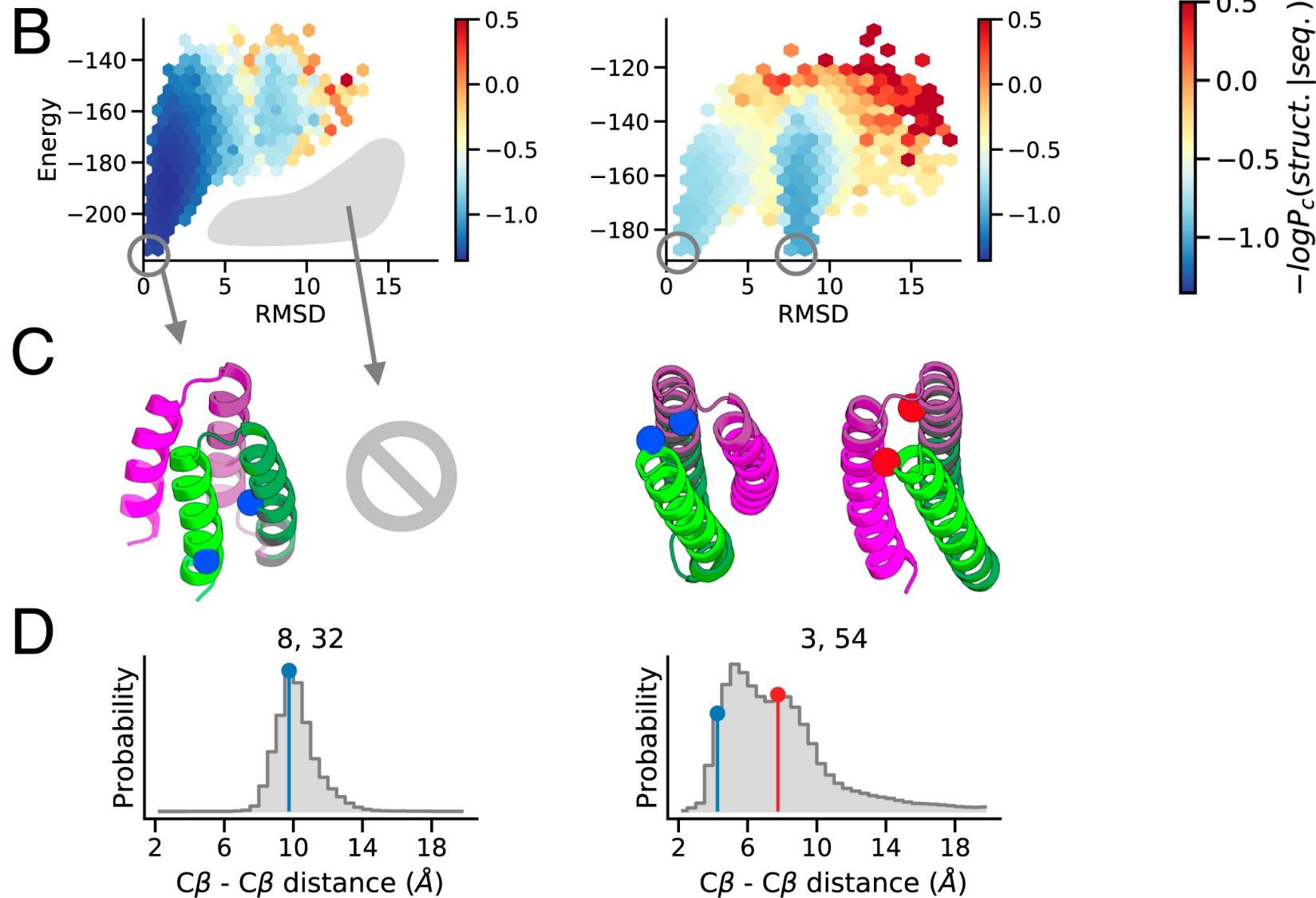


Probability distribution of distance
& orientation by trRosetta

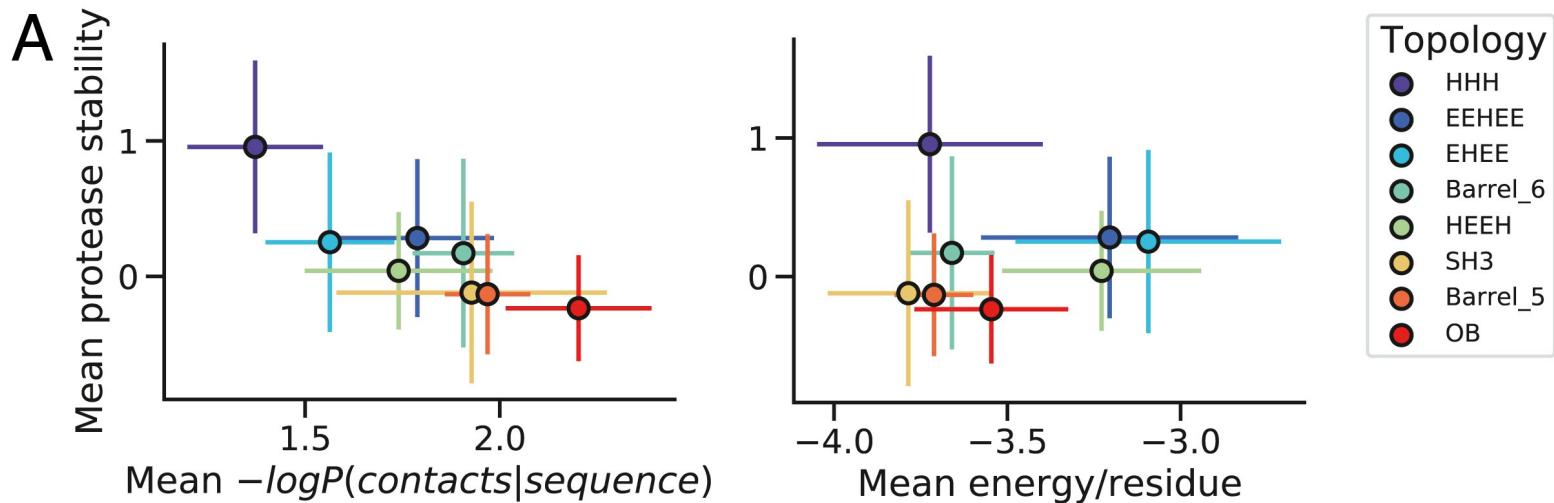
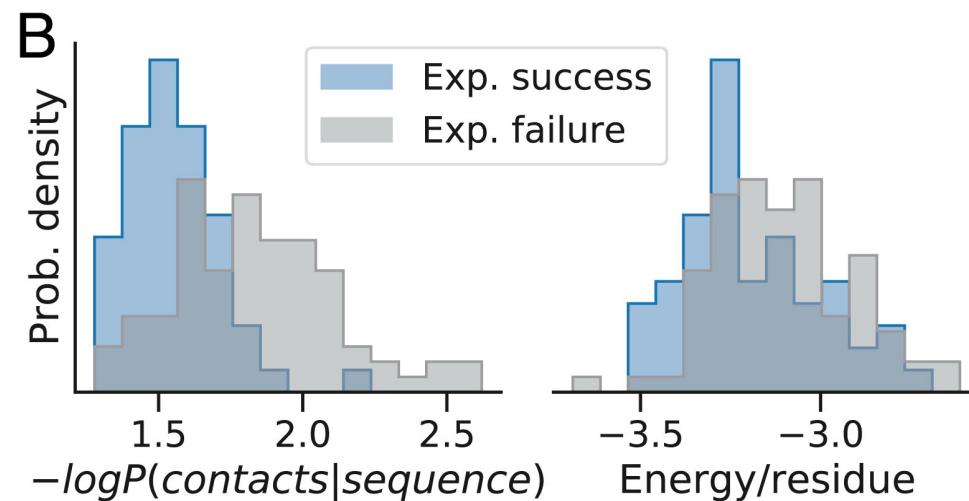


Energy prediction by Rosetta

trRosetta predicts alternative low-energy conformations



trRosetta predicts scaffold designability and experimental success



Take home messages

Fixed backbone trRosetta design outperforms traditional Rosetta in generating sequences that fold with high probability into a target structure

Fixed backbone trRosetta design procedure converged for a variety of ~100-residue protein structures after ~25 iterations, requiring only a few minutes of GPU time. (compared to CPU hours for Rosetta)

Major points to remember

1. Design sequence for a target structure: maximising ΔE folding
2. ΔE folding is a compromise between opposite interactions
3. Which features to target for optimizing stability
4. De novo design challenges: designability
5. De novo design requires sequence-structure exploration
6. ANNs trained on protein sequences and structures can automatically optimize the design for a target structure